Configuring Infinispan caches

Table of Contents

1. Infinispan caches

1.1. Cache API
1.2. Cache managers
1.3. Cache modes
1.3.1. Comparison of cache modes
1.4. Local caches
1.4.1. Simple caches

2. Clustered caches

2.1. Replicated caches

2.2. Distributed caches
2.2.1. Read consistency
2.2.2. Key ownership
2.2.3. Capacity factors
2.2.4. Level one (L1) caches
2.2.5. Server hinting
2.2.6. Key affinity service
2.2.7. Grouping API

2.3. Invalidation caches

2.4. Scattered caches

2.5. Asynchronous replication
2.5.1. Return values with asynchronous replication

2.6. Configuring initial cluster size

3. Infinispan cache configuration

3.1. Declarative cache configuration
3.1.1. Cache configuration
3.2. Adding cache templates
3.2.1. Creating caches from templates
3.2.2. Cache template inheritance
3.2.3. Cache template wildcards
3.2.4. Cache templates from multiple XML files
3.3. Creating remote caches
3.3.1. Default Cache Manager
3.3.2. Creating caches with Infinispan Console
3.3.3. Creating remote caches with the Infinispan CLI
3.3.4. Creating remote caches from Hot Rod clients
3.3.5. Creating remote caches with the REST API
3.4. Creating embedded caches
3.4.1. Adding Infinispan to your project

© 00 3 O O B B W NN

B B R R R R R W W W WWNDNNDNDND NN R R R R R
DR R W NN OO O 0 Ul R RN R R OO O U W DN

3.4.2. Configuring embedded caches

4. Enabling and configuring Infinispan statistics and JMX monitoring

4.1. Enabling statistics in embedded caches
4.2. Enabling statistics in remote caches
4.3. Enabling Hot Rod client statistics
4.4. Configuring Infinispan metrics
4.5. Registering JMX MBeans
4.5.1. Enabling JMX remote ports
4.5.2. Infinispan MBeans
4.5.3. Registering MBeans in custom MBean servers
5. Configuring JVM memory usage
5.1. Default memory configuration
5.2. Eviction and expiration
5.3. Eviction with Infinispan caches
5.3.1. Eviction strategies
5.3.2. Configuring maximum count eviction
5.3.3. Configuring maximum size eviction
5.3.4. Manual eviction
5.3.5. Passivation with eviction
5.4. Expiration with lifespan and maximum idle
5.4.1. How expiration works
5.4.2. Expiration reaper

5.4.3. Maximum idle and clustered caches

5.4.4. Configuring lifespan and maximum idle times for caches

5.4.5. Configuring lifespan and maximum idle times per entry
5.5.JVM heap and off-heap memory
5.5.1. Off-heap data storage
5.5.2. Configuring off-heap memory
6. Configuring persistent storage
6.1. Passivation
6.1.1. How passivation works
6.2. Write-through cache stores
6.3. Write-behind cache stores
6.4. Segmented cache stores
6.5. Shared cache stores
6.6. Transactions with persistent cache stores
6.7. Global persistent location
6.7.1. Configuring the global persistent location
6.8. File-based cache stores
6.8.1. Configuring file-based cache stores

6.8.2. Configuring single file cache stores

45
46
46
46
47
48
50
51
52
52
54
54
54
35
35
56
57
59
60
61
61
62
62
63
64
64
65
66
68
68
69
69
70
72
73
74
74
75
76
78
80

6.9. JDBC connection factories 81

6.9.1. Configuring managed datasources 85
6.9.2. Configuring JDBC connection pools with Agroal properties 92
6.10. SQL cache stores 93
6.10.1. Data types for keys and values 93
6.10.2. Loading Infinispan caches from database tables 96
6.10.3. Using SQL queries to load data and perform operations 100
6.10.4. SQL cache store troubleshooting 107
6.11. JDBC string-based cache stores 108
6.11.1. Configuring JDBC string-based cache stores 108
6.12. RocksDB cache stores 112
6.13. Remote cache stores 114
6.14. JPA cache stores 117
6.14.1. JPA cache store example 118
6.15. Cluster cache loaders 120
6.16. Creating custom cache store implementations 121
6.16.1. Infinispan Persistence SPI 121
6.16.2. Creating cache stores 122
6.16.3. Examples of custom cache store configuration 122
6.16.4. Deploying custom cache stores 123
6.17. Migrating data between cache stores 124
6.17.1. Cache store migrator 124
6.17.2. Getting the cache store migrator 124
6.17.3. Configuring the cache store migrator 125
6.17.4. Migrating Infinispan cache stores 130

7. Configuring Infinispan to handle network partitions 131
7.1. Split clusters and network partitions 131
7.1.1. Data consistency in a split cluster 131
7.2. Cache availability and degraded mode 132
7.2.1. Degraded cache recovery example 133
7.2.2. Verifying cache availability during network partitions 134
7.2.3. Making caches available 134
7.3. Configuring partition handling 135
7.4. Partition handling strategies 137
7.5. Merge policies 137
7.6. Configuring custom merge policies 138
7.7. Manually merging partitions in embedded caches 140
8. Configuring user roles and permissions 141
8.1. Security authorization 141
8.1.1. User roles and permissions 141

8.1.2. Permissions 142

8.1.3. Role mappers
8.2. Access control list (ACL) cache
8.3. Customizing roles and permissions
8.4. Configuring caches with security authorization
8.5. Disabling security authorization
8.6. Programmatically configuring authorization

8.7. Code execution with security authorization

144
145
146
148
150
150
152

Create and configure Infinispan caches with the mode and capabilities that suit
your application requirements. You can configure caches with expiration to
remove stale entries or use eviction to control cache size. You can also add
persistent storage to caches, enable partition handling for clustered caches, set
up transactions, and more.

Chapter 1. Infinispan caches

Infinispan caches provide flexible, in-memory data stores that you can configure to suit use cases
such as:

* Boosting application performance with high-speed local caches.
* Optimizing databases by decreasing the volume of write operations.

* Providing resiliency and durability for consistent data across clusters.

1.1. Cache API

Cache<K, V> is the central interface for Infinispan and extends java.util.concurrent.ConcurrentMap.

Cache entries are highly concurrent data structures in key:value format that support a wide and
configurable range of data types, from simple strings to much more complex objects.

1.2. Cache managers

The CacheManager API is the starting point for interacting with Infinispan caches. Cache managers
control cache lifecycle; creating, modifying, and deleting cache instances.

Infinispan provides two CacheManager implementations:

EmbeddedCacheManager
Entry point for caches when running Infinispan inside the same Java Virtual Machine (JVM) as
the client application.

RemoteCacheManager
Entry point for caches when running Infinispan Server in its own JVM. When you instantiate a
RemoteCacheManager it establishes a persistent TCP connection to Infinispan Server through the
Hot Rod endpoint.

Both embedded and remote CacheManager implementations share some methods
and properties. However, semantic differences do exist between
EmbeddedCacheManager and RemoteCacheManager.

1.3. Cache modes

Infinispan cache managers can create and control multiple caches that use
different modes. For example, you can use the same cache manager for local
caches, distributed caches, and caches with invalidation mode.

Local

Infinispan runs as a single node and never replicates read or write operations on cache entries.

Replicated

Infinispan replicates all cache entries on all nodes in a cluster and performs local read
operations only.

Distributed

Infinispan replicates cache entries on a subset of nodes in a cluster and assigns entries to fixed
owner nodes.
Infinispan requests read operations from owner nodes to ensure it returns the correct value.

Invalidation

Infinispan evicts stale data from all nodes whenever operations modify entries in the cache.
Infinispan performs local read operations only.

Scattered

Infinispan stores cache entries across a subset of nodes.

By default Infinispan assigns a primary owner and a backup owner to each cache entry in
scattered caches.

Infinispan assigns primary owners in the same way as with distributed caches, while backup
owners are always the nodes that initiate the write operations.

Infinispan requests read operations from at least one owner node to ensure it returns the
correct value.

1.3.1. Comparison of cache modes

The cache mode that you should choose depends on the qualities and guarantees you need for your
data.

The following table summarizes the primary differences between cache modes:

Simple Local Invalidatio Replicated Distribute Scattered
n d
Clustered No No Yes Yes Yes Yes
Read Highest High High High Medium Medium
performance (local) (local) (local) (local) (owners) (primary)
Write Highest High Low Lowest Medium Higher
performance (local) (local) (all nodes, (all nodes) (owner (single RPC)
no data) nodes)
Capacity Single node Single node Single node Smallest Cluster Cluster
node (sum_@GE=1DA" (sum_(@G=1)A"
nodes"'nod nodes"'nod
e_capacity")/ e_capacity")/
llownersll "2"
Availability Single node Single node Single node All nodes Owner Owner
nodes nodes
Features No TX, All No All All No TX
persistence indexing
, iIndexing

1.4. Local caches

Infinispan offers a local cache mode that is similar to a ConcurrentHashMap.

Caches offer more capabilities than simple maps, including write-through and write-behind to
persistent storage as well as management capabilities such as eviction and expiration.

The Infinispan Cache API extends the ConcurrentMap API in Java, making it easy to migrate from a
map to a Infinispan cache.

Local cache configuration

XML

<local-cache name="mycache"
statistics="true">
<encoding media-type="application/x-protostream"/>
</local-cache>

JSON
{
"local-cache": {
“name": "mycache",
"statistics": "true",
"encoding": {
"media-type": "application/x-protostream"
}
}
+
YAML
localCache:

name: "mycache"
statistics: "true"
encoding:
mediaType: "application/x-protostream"

1.4.1. Simple caches

A simple cache is a type of local cache that disables support for the following capabilities:

» Transactions and invocation batching
* Persistent storage
 Custom interceptors

* Indexing

* Transcoding

However, you can use other Infinispan capabilities with simple caches such as expiration, eviction,
statistics, and security features. If you configure a capability that is not compatible with a simple
cache, Infinispan throws an exception.

Simple cache configuration
XML

<local-cache simple-cache="true" />

JSON

{
"local-cache" : {
"simple-cache" : "true"
}
}

YAML

localCache:
simpleCache: "true"

Chapter 2. Clustered caches

You can create embedded and remote caches on Infinispan clusters that replicate data across
nodes.

2.1. Replicated caches

Infinispan replicates all entries in the cache to all nodes in the cluster. Each node can perform read
operations locally.

Replicated caches provide a quick and easy way to share state across a cluster, but is suitable for
clusters of less than ten nodes. Because the number of replication requests scales linearly with the
number of nodes in the cluster, using replicated caches with larger clusters reduces performance.
However you can use UDP multicasting for replication requests to improve performance.

Each key has a primary owner, which serializes data container updates in order to provide
consistency.

Infinispan cluster

Primary owner Backup A

- Replication
put(k, v) ————p» Cache @ — request —p Cache @

Client

l

Replication
request

Backup B l

Cache @

Replication
request

Backup C l

Cache @

Figure 1. Replicated cache

Synchronous or asynchronous replication

» Synchronous replication blocks the caller (e.g. on a cache.put(key, value)) until the
modifications have been replicated successfully to all the nodes in the cluster.

» Asynchronous replication performs replication in the background, and write operations return
immediately. Asynchronous replication is not recommended, because communication errors, or
errors that happen on remote nodes are not reported to the caller.

Transactions

If transactions are enabled, write operations are not replicated through the primary owner.

With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message and an unlock
message (optional). Either the one-phase prepare or the unlock message is fire-and-forget.

With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Again, either the one-phase prepare or the unlock message is fire-and-
forget.

2.2. Distributed caches

Infinispan attempts to keep a fixed number of copies of any entry in the cache, configured as
numOwners. This allows distributed caches to scale linearly, storing more data as nodes are added to
the cluster.

As nodes join and leave the cluster, there will be times when a key has more or less than numOwners
copies. In particular, if numOwners nodes leave in quick succession, some entries will be lost, so we
say that a distributed cache tolerates numOwners - 1 node failures.

The number of copies represents a trade-off between performance and durability of data. The more
copies you maintain, the lower performance will be, but also the lower the risk of losing data due to
server or network failures.

Infinispan splits the owners of a key into one primary owner, which coordinates writes to the key,
and zero or more backup owners.

The following diagram shows a write operation that a client sends to a backup owner. In this case
the backup node forwards the write to the primary owner, which then replicates the write to the
backup.

Infinispan cluster

Originator / Backup Primary owner
- " Forward
V) —> —
put(k, v) Cache @ request 1 Cache @
Client
T Replication I

request

Figure 2. Cluster replication

Infinispan cluster

Primary owner Backup A
- " Replication
put(k, v) ———p Cache @ — repquest — Cache @
Client
Replication
request
Backup B l Node C

Cache @ Cache

Figure 3. Distributed cache

Read operations

Read operations request the value from the primary owner. If the primary owner does not respond
in a reasonable amount of time, Infinispan requests the value from the backup owners as well.

A read operation may require @ messages if the key is present in the local cache, or up to 2 *
numOwners messages if all the owners are slow.

Write operations

Write operations result in at most 2 * numOwners messages. One message from the originator to the
primary owner and numOwners - 1 messages from the primary to the backup nodes along with the
corresponding acknowledgment messages.

o Cache topology changes may cause retries and additional messages for both read
and write operations.

Synchronous or asynchronous replication

Asynchronous replication is not recommended because it can lose updates. In addition to losing
updates, asynchronous distributed caches can also see a stale value when a thread writes to a key
and then immediately reads the same key.

Transactions

Transactional distributed caches send lock/prepare/commit/unlock messages to the affected nodes
only, meaning all nodes that own at least one key affected by the transaction. As an optimization, if
the transaction writes to a single key and the originator is the primary owner of the key, lock
messages are not replicated.

2.2.1. Read consistency

Even with synchronous replication, distributed caches are not linearizable. For transactional

caches, they do not support serialization/snapshot isolation.

For example, a thread is carrying out a single put request:

cache.get(k) -> v1
cache.put(k, v2)
cache.get(k) -> v2

But another thread might see the values in a different order:

cache.get(k) -> v2
cache.get(k) -> v1

The reason is that read can return the value from any owner, depending on how fast the primary
owner replies. The write is not atomic across all the owners. In fact, the primary commits the
update only after it receives a confirmation from the backup. While the primary is waiting for the
confirmation message from the backup, reads from the backup will see the new value, but reads
from the primary will see the old one.

2.2.2. Key ownership

Distributed caches split entries into a fixed number of segments and assign each segment to a list of
owner nodes. Replicated caches do the same, with the exception that every node is an owner.

The first node in the list of owners is the primary owner. The other nodes in the list are backup
owners. When the cache topology changes, because a node joins or leaves the cluster, the segment
ownership table is broadcast to every node. This allows nodes to locate keys without making
multicast requests or maintaining metadata for each key.

The numSegments property configures the number of segments available. However, the number of
segments cannot change unless the cluster is restarted.

Likewise the key-to-segment mapping cannot change. Keys must always map to the same segments
regardless of cluster topology changes. It is important that the key-to-segment mapping evenly
distributes the number of segments allocated to each node while minimizing the number of
segments that must move when the cluster topology changes.

Consistent hash factory Description
implementation

SyncConsistentHashFactory Uses an algorithm based on consistent hashing. Selected by default
when server hinting is disabled.

This implementation always assigns keys to the same nodes in every
cache as long as the cluster is symmetric. In other words, all caches
run on all nodes. This implementation does have some negative
points in that the load distribution is slightly uneven. It also moves
more segments than strictly necessary on a join or leave.

Consistent hash factory
implementation

TopologyAwareSyncConsistent
HashFactory

DefaultConsistentHashFactor
y

TopologyAwareConsistentHash
Factory

ReplicatedConsistentHashFac
tory

Hashing configuration

Description

Equivalent to SyncConsistentHashFactory but used with server
hinting to distribute data across the topology so that backed up
copies of data are stored on different nodes in the topology than the
primary owners. This is the default consistent hashing
implementation with server hinting.

Achieves a more even distribution than SyncConsistentHashFactory,
but with one disadvantage. The order in which nodes join the cluster
determines which nodes own which segments. As a result, keys
might be assigned to different nodes in different caches.

Equivalent to DefaultConsistentHashFactory but used with server
hinting to distribute data across the topology so that backed up
copies of data are stored on different nodes in the topology than the
primary owners.

Used internally to implement replicated caches. You should never
explicitly select this algorithm in a distributed cache.

You can configure ConsistentHashFactory implementations, including custom ones, with embedded

caches only.

XML

<distributed-cache name="distributedCache"
owners="2"
segments="100"
capacity-factor="2" />

ConfigurationBuilder

Configuration ¢ = new ConfigurationBuilder()

.clustering()

.cacheMode(CacheMode.DIST_SYNC)

.hash()
.numOwners(2)

.numSegments(100)
.capacityFactor(2)

.build();

Additional resources

» KeyPartitioner

10

2.2.3. Capacity factors

Capacity factors allocate the number of segments based on resources available to each node in the
cluster.

The capacity factor for a node applies to segments for which that node is both the primary owner
and backup owner. In other words, the capacity factor specifies is the total capacity that a node has
in comparison to other nodes in the cluster.

The default value is 1 which means that all nodes in the cluster have an equal capacity and
Infinispan allocates the same number of segments to all nodes in the cluster.

However, if nodes have different amounts of memory available to them, you can configure the
capacity factor so that the Infinispan hashing algorithm assigns each node a number of segments
weighted by its capacity.

The value for the capacity factor configuration must be a positive number and can be a fraction
such as 1.5. You can also configure a capacity factor of @ but is recommended only for nodes that
join the cluster temporarily and should use the zero capacity configuration instead.

Zero capacity nodes

You can configure nodes where the capacity factor is 0 for every cache, user defined caches, and
internal caches. When defining a zero capacity node, the node does not hold any data.

Zero capacity node configuration

XML

<infinispan>
<cache-container zero-capacity-node="true" />
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {
"zero-capacity-node" : "true"
}
}
}

YAML
infinispan:

cacheContainer:
zeroCapacityNode: "true"

11

ConfigurationBuilder

new GlobalConfigurationBuilder().zeroCapacityNode(true);

2.2.4. Level one (1) caches

Infinispan nodes create local replicas when they retrieve entries from another node in the cluster.
L1 caches avoid repeatedly looking up entries on primary owner nodes and adds performance.

The following diagram illustrates how L1 caches work:

Infinispan cluster

—@—o—»
- Originator e

Client
L1cache 4+ Cache
L @—ww—r o

Primary owner

v

Figure 4. L1 cache
In the "L1 cache" diagram:
1. A client invokes cache.get() to read an entry for which another node in the cluster is the
primary owner.
The originator node forwards the read operation to the primary owner.
The primary owner returns the key/value entry.

The originator node creates a local copy.

S

Subsequent cache.get() invocations return the local entry instead of forwarding to the primary
owner.

L1 caching performance

Enabling L1 improves performance for read operations but requires primary owner nodes to
broadcast invalidation messages when entries are modified. This ensures that Infinispan removes
any out of date replicas across the cluster. However this also decreases performance of write
operations and increases memory usage, reducing overall capacity of caches.

o Infinispan evicts and expires local replicas, or L1 entries, like any other cache
entry.

L1 cache configuration

12

XML

<distributed-cache 11-1lifespan="5000"
11-cleanup-interval="60000">
</distributed-cache>

JSON

{

"distributed-cache": {
"11-lifespan": "5000",
"11-cleanup-interval": "60000"

}

}

YAML

distributedCache:
11Lifespan: "5000"
11-cleanup-interval: "60000"

ConfigurationBuilder

ConfiqurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC)
110)
.lifespan(5000, TimeUnit.MILLISECONDS)
.cleanupTaskFrequency (60000, TimeUnit.MILLISECONDS);

2.2.5. Server hinting

Server hinting increases availability of data in distributed caches by replicating entries across as
many servers, racks, and data centers as possible.

o Server hinting applies only to distributed caches.

When Infinispan distributes the copies of your data, it follows the order of precedence: site, rack,
machine, and node. All of the configuration attributes are optional. For example, when you specify
only the rack IDs, then Infinispan distributes the copies across different racks and nodes.

Server hinting can impact cluster rebalancing operations by moving more segments than necessary
if the number of segments for the cache is too low.

O An alternative for clusters in multiple data centers is cross-site replication.
w

Server hinting configuration

13

XML

<cache-container>
<transport cluster="MyCluster"
machine="LinuxServer@1"
rack="Rack01"
site="US-WestCoast"/>
</cache-container>

JSON

{
“infinispan" : {
"cache-container" : {
"transport" : {

"cluster" : "MyCluster",
"machine" : "LinuxServer@1",
"rack" : "Rack01",
"site" : "US-WestCoast"

YAML

cacheContainer:
transport:
cluster: "MyCluster"
machine: "LinuxServer@1"
rack: "Racko1"
site: "US-WestCoast"

GlobalConfigurationBuilder

GlobalConfigurationBuilder global = GlobalConfigurationBuilder.
defaultClusteredBuilder()

.transport()

.clusterName("MyCluster")

.machineId("LinuxServer@1")

.rackId("Rack01")

.siteId("US-WestCoast");

Additional resources

* org.infinispan.configuration.global.TransportConfigurationBuilder

14

2.2.6. Key affinity service

In a distributed cache, a key is allocated to a list of nodes with an opaque algorithm. There is no
easy way to reverse the computation and generate a key that maps to a particular node. However,
Infinispan can generate a sequence of (pseudo-)random keys, see what their primary owner is, and
hand them out to the application when it needs a key mapping to a particular node.

Following code snippet depicts how a reference to this service can be obtained and used.

// 1. Obtain a reference to a cache
Cache cache = ...
Address address = cache.getCacheManager().getAddress();

// 2. Create the affinity service
KeyAffinityService keyAffinityService = KeyAffinityServiceFactory
.newLocalKeyAffinityService(

cache,

new RndKeyGenerator(),

Executors.newSingleThreadExecutor(),

100);

// 3. Obtain a key for which the local node is the primary owner
Object localKey = keyAffinityService.getKeyForAddress(address);

// 4. Insert the key in the cache
cache.put(localKey, "yourValue");

The service is started at step 2: after this point it uses the supplied Executor to generate and queue
keys. At step 3, we obtain a key from the service, and at step 4 we use it.

Lifecycle
KeyAffinityService extends Lifecycle, which allows stopping and (re)starting it:
public interface Lifecycle {

void start();
void stop();

The service is instantiated through KeyAffinityServiceFactory. All the factory methods have an
Executor parameter, that is used for asynchronous key generation (so that it won’t happen in the
caller’s thread). It is the user’s responsibility to handle the shutdown of this Executor.

The KeyAffinityService, once started, needs to be explicitly stopped. This stops the background key
generation and releases other held resources.

The only situation in which KeyAffinityService stops by itself is when the cache manager with
which it was registered is shutdown.

15

Topology changes

When the cache topology changes, the ownership of the keys generated by the KeyAffinityService
might change. The key affinity service keep tracks of these topology changes and doesn’t return
keys that would currently map to a different node, but it won’t do anything about keys generated
earlier.

As such, applications should treat KeyAffinityService purely as an optimization, and they should
not rely on the location of a generated key for correctness.

In particular, applications should not rely on keys generated by KeyAffinityService for the same
address to always be located together. Collocation of keys is only provided by the Grouping APIL.

2.2.7. Grouping API

Complementary to the Key affinity service, the Grouping API allows you to co-locate a group of
entries on the same nodes, but without being able to select the actual nodes.

By default, the segment of a key is computed using the key’s hashCode(). If you use the Grouping API,
Infinispan will compute the segment of the group and use that as the segment of the key.

When the Grouping API is in use, it is important that every node can still compute the owners of
every key without contacting other nodes. For this reason, the group cannot be specified manually.
The group can either be intrinsic to the entry (generated by the key class) or extrinsic (generated by
an external function).

To use the Grouping API, you must enable groups.

Configuration ¢ = new ConfigurationBuilder()
.clustering().hash().groups().enabled()
.build();

<distributed-cache>
<groups enabled="true"/>
</distributed-cache>

If you have control of the key class (you can alter the class definition, it’s not part of an
unmodifiable library), then we recommend using an intrinsic group. The intrinsic group is
specified by adding the @Group annotation to a method, for example:

16

class User {

String office;

public int hashCode() {
// Defines the hash for the key, normally used to determine location

}

// Override the location by specifying a group
// A1l keys in the same group end up with the same owners
@Group
public String getOffice() {
return office;

}
}

o The group method must return a String

If you don’t have control over the key class, or the determination of the group is an orthogonal
concern to the key class, we recommend using an extrinsic group. An extrinsic group is specified by
implementing the Grouper interface.

public interface Grouper<T> {
String computeGroup(T key, String group);

Class<T> getKeyType();

If multiple Grouper classes are configured for the same key type, all of them will be called, receiving
the value computed by the previous one. If the key class also has a @Group annotation, the first
Grouper will receive the group computed by the annotated method. This allows you even greater
control over the group when using an intrinsic group.

17

Example Grouper implementation
public class KXGrouper implements Grouper<String> {

// The pattern requires a String key, of length 2, where the first character is
// "k" and the second character is a digit. We take that digit, and perform

// modular arithmetic on it to assign it to group "0" or group "1".

private static Pattern kPattern = Pattern.compile("(”k)(<a>\\d)$");

public String computeGroup(String key, String group) {
Matcher matcher = kPattern.matcher(key);
if (matcher.matches()) {
String g = Integer.parseInt(matcher.group(2)) % 2 + "";
return g,
} else {
return null;
}
}

public Class<String> getKeyType() {
return String.class;

}

Grouper implementations must be registered explicitly in the cache configuration. If you are
configuring Infinispan programmatically:

Configuration ¢ = new ConfiqurationBuilder()
.clustering().hash().groups().enabled().addGrouper(new KXGrouper())
.build();

Or, if you are using XML:

<distributed-cache>
<groups enabled="true">
<grouper class="com.example.KXGrouper" />
</groups>
</distributed-cache>

Advanced API

AdvancedCache has two group-specific methods:

» getGroup(groupName) retrieves all keys in the cache that belong to a group.

» removeGroup(groupName) removes all the keys in the cache that belong to a group.

Both methods iterate over the entire data container and store (if present), so they can be slow when

18

a cache contains lots of small groups.

2.3. Invalidation caches

You can use Infinispan in invalidation mode to optimize systems that perform high volumes of read
operations. A good example is to use invalidation to prevent lots of database writes when state
changes occur.

This cache mode only makes sense if you have another, permanent store for your data such as a
database and are only using Infinispan as an optimization in a read-heavy system, to prevent
hitting the database for every read. If a cache is configured for invalidation, every time data is
changed in a cache, other caches in the cluster receive a message informing them that their data is
now stale and should be removed from memory and from any local store.

Infinispan cluster

Originator Node A
- " Invalidation
put(k, v) ——p» Cache @ [~ message e Cache
Client
Invalidation Invalidation
message message

Node B l Node C l
Cache >< Cache ><

Figure 5. Invalidation cache

Sometimes the application reads a value from the external store and wants to write it to the local
cache, without removing it from the other nodes. To do this, it must call
Cache.putForExternalRead(key, value) instead of Cache.put(key, value).

Invalidation mode can be used with a shared cache store. A write operation will both update the
shared store, and it would remove the stale values from the other nodes' memory. The benefit of
this is twofold: network traffic is minimized as invalidation messages are very small compared to
replicating the entire value, and also other caches in the cluster look up modified data in a lazy
manner, only when needed.

Never use invalidation mode with a local, non-shared, cache store. The
invalidation message will not remove entries in the local store, and some nodes

will keep seeing the stale value.

An invalidation cache can also be configured with a special cache loader, ClusterLoader. When

19

(lusterLoader is enabled, read operations that do not find the key on the local node will request it
from all the other nodes first, and store it in memory locally. In certain situation it will store stale
values, so only use it if you have a high tolerance for stale values.

Synchronous or asynchronous replication

When synchronous, a write blocks until all nodes in the cluster have evicted the stale value. When
asynchronous, the originator broadcasts invalidation messages but does not wait for responses.
That means other nodes still see the stale value for a while after the write completed on the
originator.

Transactions

Transactions can be used to batch the invalidation messages. Transactions acquire the key lock on
the primary owner.

With pessimistic locking, each write triggers a lock message, which is broadcast to all the nodes.
During transaction commit, the originator broadcasts a one-phase prepare message (optionally fire-
and-forget) which invalidates all affected keys and releases the locks.

With optimistic locking, the originator broadcasts a prepare message, a commit message, and an
unlock message (optional). Either the one-phase prepare or the unlock message is fire-and-forget,
and the last message always releases the locks.

2.4. Scattered caches

Scattered caches are very similar to distributed caches as they allow linear scaling of the cluster.
Scattered caches allow single node failure by maintaining two copies of the data (numOwners=2).
Unlike distributed caches, the location of data is not fixed; while we use the same Consistent Hash
algorithm to locate the primary owner, the backup copy is stored on the node that wrote the data
last time. When the write originates on the primary owner, backup copy is stored on any other
node (the exact location of this copy is not important).

This has the advantage of single Remote Procedure Call (RPC) for any write (distributed caches
require one or two RPCs), but reads have to always target the primary owner. That results in faster
writes but possibly slower reads, and therefore this mode is more suitable for write-intensive
applications.

Storing multiple backup copies also results in slightly higher memory consumption. In order to
remove out-of-date backup copies, invalidation messages are broadcast in the cluster, which
generates some overhead. This lowers the performance of scattered caches in clusters with a large
number of nodes.

When a node crashes, the primary copy may be lost. Therefore, the cluster has to reconcile the
backups and find out the last written backup copy. This process results in more network traffic
during state transfer.

Since the writer of data is also a backup, even if we specify machine/rack/site IDs on the transport
level the cluster cannot be resilient to more than one failure on the same machine/rack/site.

o You cannot use scattered caches with transactions or asynchronous replication.

20

The cache is configured in a similar way as the other cache modes, here is an example of
declarative configuration:

<scattered-cache name="scatteredCache" />

Configuration ¢ = new ConfigurationBuilder()
.clustering().cacheMode(CacheMode.SCATTERED_SYNC)
.build();

Scattered mode is not exposed in the server configuration as the server is usually accessed through
the Hot Rod protocol. The protocol automatically selects primary owner for the writes and
therefore the write (in distributed mode with two owner) requires single RPC inside the cluster, too.
Therefore, scattered cache would not bring the performance benefit.

2.5. Asynchronous replication

All clustered cache modes can be configured to use asynchronous communications with the
mode="ASYNC" attribute on the <replicated-cache/>, <distributed-cache>, or <invalidation-cache/>
element.

With asynchronous communications, the originator node does not receive any acknowledgement
from the other nodes about the status of the operation, so there is no way to check if it succeeded
on other nodes.

We do not recommend asynchronous communications in general, as they can cause inconsistencies
in the data, and the results are hard to reason about. Nevertheless, sometimes speed is more
important than consistency, and the option is available for those cases.

Asynchronous API

The Asynchronous API allows you to use synchronous communications, but without blocking the
user thread.

There is one caveat: The asynchronous operations do NOT preserve the program order. If a thread
calls cache.putAsync(k, v1); cache.putAsync(k, v2), the final value of k may be either v1 or v2. The
advantage over using asynchronous communications is that the final value can’t be v1 on one node
and v2 on another.

2.5.1. Return values with asynchronous replication

Because the (ache interface extends java.util.Map, write methods like put(key, value) and
remove (key) return the previous value by default.

In some cases, the return value may not be correct:

1. When using AdvancedCache.withFlags() with Flag.IGNORE_RETURN_VALUE, Flag.SKIP_REMOTE_LOOKUP,
or Flag.SKIP_CACHE_LOAD.

21

When the cache is configured with unreliable-return-values="true".
When using asynchronous communications.

When there are multiple concurrent writes to the same key, and the cache topology changes.
The topology change will make Infinispan retry the write operations, and a retried operation’s
return value is not reliable.

Transactional caches return the correct previous value in cases 3 and 4. However, transactional
caches also have a gotcha: in distributed mode, the read-committed isolation level is implemented

as

repeatable-read. That means this example of "double-checked locking" won’t work:

Cache cache = ...
TransactionManager tm = ...

tm.begin();
try {
Integer v1 = cache.get(k);
// Increment the value
Integer v2 = cache.put(k, v1 + 1);
if (Objects.equals(v1, v2) {

// success
} else {
// retry
}
} finally {
tm.commit();
}
The correct way to implement this is to use
cache.getAdvancedCache().withFlags(Flag.FORCE_WRITE_LOCK).get (k).

In

caches with optimistic locking, writes can also return stale previous values. Write skew checks

can avoid stale previous values.

2

.6. Configuring initial cluster size

Infinispan handles cluster topology changes dynamically. This means that nodes do not need to
wait for other nodes to join the cluster before Infinispan initializes the caches.

If your applications require a specific number of nodes in the cluster before caches start, you can

CO

nfigure the initial cluster size as part of the transport.

Procedure

1.
2.

22

Open your Infinispan configuration for editing.

Set the minimum number of nodes required before caches start with the initial-cluster-size
attribute or initialClusterSize() method.

Set the timeout, in milliseconds, after which the cache manager does not start with the initial-
cluster-timeout attribute or initialClusterTimeout() method.

4. Save and close your Infinispan configuration.

Initial cluster size configuration

XML

<infinispan>
<cache-container>
<transport initial-cluster-size="4"
initial-cluster-timeout="30000" />
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {

"transport" : {
"initial-cluster-size" : "4",
"initial-cluster-timeout" : "30000"

}

}
}
}

YAML

infinispan:
cacheContainer:
transport:
initialClusterSize: "4"
initialClusterTimeout: "30000"

ConfigurationBuilder

GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
.transport()
.initialClusterSize(4)
.initialClusterTimeout (30000, TimeUnit.MILLISECONDS);

23

Chapter 3. Infinispan cache configuration

Cache configuration controls how Infinispan stores your data.

As part of your cache configuration, you declare the cache mode you want to use. For instance, you
can configure Infinispan clusters to use replicated caches or distributed caches.

Your configuration also defines the characteristics of your caches and enables the Infinispan
capabilities that you want to use when handling data. For instance, you can configure how
Infinispan encodes entries in your caches, whether replication requests happen synchronously or
asynchronously between nodes, if entries are mortal or immortal, and so on.

3.1. Declarative cache configuration
You can configure caches declaratively, in XML or JSON format, according to the Infinispan schema.

Declarative cache configuration has the following advantages over programmatic configuration:

Portability
Define each configuration in a standalone file that you can use to create embedded and remote
caches.
You can also use declarative configuration to create caches with Infinispan Operator for clusters
running on Kubernetes.

Simplicity
Keep markup languages separate to programming languages.
For example, to create remote caches it is generally better to not add complex XML directly to
Java code.

Infinispan Server configuration extends infinispan.xml to include cluster
transport mechanisms, security realms, and endpoint configuration. If you declare
caches as part of your Infinispan Server configuration you should use

o management tooling, such as Ansible or Chef, to keep it synchronized across the
cluster.

To dynamically synchronize remote caches across Infinispan clusters, create them
at runtime.

3.1.1. Cache configuration

You can create declarative cache configuration in XML, JSON, and YAML format.

All declarative caches must conform to the Infinispan schema. Configuration in JSON format must
follow the structure of an XML configuration, elements correspond to objects and attributes
correspond to fields.

Distributed caches

24

XML

<d

</

istributed-cache owners="2"
segments="256"
capacity-factor="1.0"
11-1ifespan="5000"
mode="SYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
<locking isolation="REPEATABLE_READ"/>
<transaction mode="FULL_XA"
locking="OPTIMISTIC"/>
<expiration lifespan="5000"
max-idle="1000" />
<memory max-count="1000000"
when-full="REMOVE" />
<indexing enabled="true"
storage="1local-heap">
<index-reader refresh-interval="1000"/>
</indexing>
<partition-handling when-split="ALLOW_READ_WRITES"

merge-policy="PREFERRED_NON_NULL"/>

<persistence passivation="false">

<!-- Persistent storage configuration. -->
</persistence>
distributed-cache>

25

JSON

{
"distributed-cache": {
"mode": "SYNC",
"owners": "2",
"segments": "256",
"capacity-factor": "1.0",
"11-lifespan": "5000",
"statistics": "true",
"encoding": {
"media-type": "application/x-protostream"
Jr
"locking": {
"jsolation": "REPEATABLE_READ"
Iy,
"transaction": {
"mode": "FULL_XA",
"locking": "OPTIMISTIC"
I
"expiration" : {
"lifespan" : "5000",
"max-idle" : "1000"
Iy
"memory": {
"max-count": "1000000",
"when-full": "REMOVE"
Iy,
"indexing" : {
"enabled" : true,
"storage" : "local-heap",
"index-reader" : {
"refresh-interval” : "1000"
}
Iy
"partition-handling" : {
"when-split" : "ALLOW_READ_WRITES",
"merge-policy" : "PREFERRED_NON_NULL"
b
"persistence" : {
"passivation" : false
Iy
}
}

26

YAML

distributedCache:
mode: "SYNC"
owners: "2"
segments: "256"
capacityFactor: "1.0"
11Lifespan: "5000"
statistics: "true"

encoding:

mediaType: "application/x-protostream”
locking:

isolation: "REPEATABLE_READ"
transaction:

mode: "FULL_XA"

locking: "OPTIMISTIC"
expiration:

lifespan: "5000"

maxIdle: "1000"
memory:

maxCount: "1000000"

whenFull: "REMOVE"
indexing:

enabled: "true"

storage: "local-heap"

indexReader:

refreshInterval: "1000"

partitionHandling:

whenSplit: "ALLOW_READ_WRITES"

mergePolicy: "PREFERRED_NON_NULL"
persistence:

passivation: "false"

Persistent storage configuration.

Replicated caches

XML

<replicated-cache segments="256"

mode="SYNC"

statistics="true">
<encoding media-type="application/x-protostream"/>
<locking isolation="REPEATABLE_READ"/>
<transaction mode="FULL_XA"

locking="OPTIMISTIC"/>
<expiration lifespan="5000"
max-idle="1000" />
<memory max-count="1000000"
when-full="REMOVE"/>
<indexing enabled="true"
storage="1local-heap">
<index-reader refresh-interval="1000"/>
</indexing>
<partition-handling when-split="ALLOW_READ_WRITES"
merge-policy="PREFERRED_NON_NULL"/>
<persistence passivation="false">
<!-- Persistent storage confiquration. -->
</persistence>
</replicated-cache>

28

JSON

{
"replicated-cache": {

"mode": "SYNC",

"segments": "256",

"statistics": "true",

"encoding": {
"media-type": "application/x-protostream"

b

"locking": {
"isolation": "REPEATABLE_READ"

Jr

"transaction": {
"mode": "FULL_XA",
"locking": "OPTIMISTIC"

I

"expiration" : {
"lifespan" : "5000",
"max-idle" : "1000"

Iy,

"memory": {
"max-count": "1000000",
"when-full": "REMOVE"

Jr

"indexing" : {
"enabled" : true,
"storage" : "local-heap",
"index-reader" : {

"refresh-interval” : "1000"

}

I

"partition-handling" : {
"when-split" : "ALLOW_READ_WRITES",
"merge-policy" : "PREFERRED_NON_NULL"

Iy

"persistence” : {
"passivation" : false

}

}
}

29

YAML

replicatedCache:

mode: "SYNC"
segments: "256"
statistics: "true"

encoding:

mediaType: "application/x-protostream"
locking:

isolation: "REPEATABLE_READ"
transaction:

mode: "FULL XA"

locking: "OPTIMISTIC"
expiration:

lifespan: "5000"

maxIdle: "1000"
memory:

maxCount: "1000000"

whenFull: "REMOVE"
indexing:

enabled: "true"

storage: "local-heap"

indexReader:

refreshInterval: "1000"

partitionHandling:

whenSplit: "ALLOW_READ_WRITES"

mergePolicy: "PREFERRED_NON_NULL"
persistence:

passivation: "false"

Persistent storage configuration.

Multiple caches

30

XML

<infinispan
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:13.0
https://infinispan.org/schemas/infinispan-config-13.0.xsd
urn:infinispan:server:13.0
https://infinispan.org/schemas/infinispan-server-13.0.xsd"
xmlns="urn:infinispan:config:13.0"
xmlns:server="urn:infinispan:server:13.0">
<cache-container name="default"
statistics="true">
<distributed-cache name="mycacheone"
mode="ASYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
<expiration lifespan="300000"/>
<memory max-size="400MB"
when-full="REMOVE"/>
</distributed-cache>
<distributed-cache name="mycachetwo"
mode="SYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
<expiration lifespan="300000"/>
<memory max-size="400MB"
when-full="REMOVE" />
</distributed-cache>
</cache-container>
</infinispan>

31

YAML

infinispan:
cacheContainer:
name: "default"
statistics: "true"
caches:
mycacheone:
distributedCache:
mode: "ASYNC"
statistics: "true"
encoding:
mediaType: "application/x-protostream"
expiration:
lifespan: "300000"
memory:
maxSize: "400MB"
whenFull: "REMOVE"
mycachetwo:
distributedCache:
mode: "SYNC"
statistics: "true"
encoding:
mediaType: "application/x-protostream"
expiration:
lifespan: "300000"
memory:
maxSize: "400MB"
whenFull: "REMOVE"

32

JSON

{
"infinispan" : {
"cache-container" : {
"name" : "default",
"statistics" : "true",
"caches" : {
"mycacheone" : {
"distributed-cache" : {
"mode": "ASYNC",
"statistics": "true",
"encoding": {
"media-type": "application/x-protostream"
s
"expiration” : {
"lifespan" : "300000"
}

emory": {
"max-size": "400MB",
"when-full": "REMOVE"
}
}
o
"mycachetwo" : {
"distributed-cache" : {
"mode": "SYNC",
"statistics": "true",
"encoding": {
"media-type": "application/x-protostream”
o
"expiration" : {
"lifespan" : "300000"
s
"memory": {
"max-size": "400MB",
"when-full": "REMOVE"

Additional resources

* Infinispan configuration schema reference

¢ infinispan-config-13.0.xsd

33

3.2. Adding cache templates

The Infinispan schema includes *-cache-configuration elements that you can use to create
templates. You can then create caches on demand, using the same configuration multiple times.

Procedure

1. Open your Infinispan configuration for editing.

2. Add the cache configuration with the appropriate *-cache-configuration element or object to
the cache manager.

3. Save and close your Infinispan configuration.

Cache template example

XML

<infinispan>
<cache-container>
<distributed-cache-configuration name="my-dist-template"
mode="SYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
<memory max-count="1000000"
when-full="REMOVE" />
<expiration lifespan="5000"
max-idle="1000"/>
</distributed-cache-configuration>
</cache-container>
</infinispan>

34

JSON

{
"infinispan" : {
"cache-container" : {
"distributed-cache-configuration" : {
"name" : "my-dist-template",
"mode": "SYNC",
"statistics": "true",
"encoding": {
"media-type": "application/x-protostream"
I
"expiration" : {
"lifespan" : "5000",
"max-idle" : "1000"
I
"memory": {
"max-count": "1000000",
"when-full": "REMOVE"

YAML

infinispan:
cacheContainer:
distributedCacheConfiguration:
name: "my-dist-template"
mode: "SYNC"
statistics: "true"
encoding:
mediaType: "application/x-protostream"
expiration:
lifespan: "5000"
maxIdle: "1000"
memory :
maxCount: "1000000"
whenFull: "REMOVE"

3.2.1. Creating caches from templates

Create caches from configuration templates.

@ Templates for remote caches are available from the Cache templates menu in
- Infinispan Console.

35

Prerequisites

* Add at least one cache template to the cache manager.

Procedure

1. Open your Infinispan configuration for editing.
2. Specify the template from which the cache inherits with the configuration attribute or field.

3. Save and close your Infinispan configuration.

Cache configuration inherited from a template

XML

<distributed-cache configuration="my-dist-template" />

JSON

{

"distributed-cache": {
"configuration": "my-dist-template"
}
}

YAML

distributedCache:
configuration: "my-dist-template"

3.2.2. Cache template inheritance

Cache configuration templates can inherit from other templates to extend and override settings.

Cache template inheritance is hierarchical. For a child configuration template to inherit from a
parent, you must include it after the parent template.

Additionally, template inheritance is additive for elements that have multiple values. A cache that
inherits from another template merges the values from that template, which can override
properties.

Template inheritance example

36

XML

<infinispan>
<cache-container>
<distributed-cache-configuration name="base-template">
<expiration lifespan="5000"/>
</distributed-cache-configuration>
<distributed-cache-configuration name="extended-template"
configuration="base-template">
<encoding media-type="application/x-protostream"/>
<expiration lifespan="10000"
max-idle="1000"/>
</distributed-cache-configuration>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {
"caches" : {
"base-template" : {
"distributed-cache-configuration" : {
"expiration" : {
"lifespan" : "5000"
}
}
b
"extended-template" : {
"distributed-cache-configuration" : {
"configuration" : "base-template",
"encoding": {
"media-type": "application/x-protostream"
I
"expiration" : {
"lifespan" : "10000",
"max-idle" : "1000"

YAML

infinispan:
cacheContainer:
caches:
base-template:
distributedCacheConfiguration:
expiration:
lifespan: "5000"
extended-template:
distributedCacheConfiguration:
configuration: "base-template"
encoding:
mediaType: "application/x-protostream"
expiration:
lifespan: "10000"
maxIdle: "1000"

3.2.3. Cache template wildcards

You can add wildcards to cache configuration template names. If you then create caches where the
name matches the wildcard, Infinispan applies the configuration template.

0 Infinispan throws exceptions if cache names match more than one wildcard.

Template wildcard example

XML

<infinispan>
<cache-container>
<distributed-cache-configuration name="async-dist-cache-*"
mode="ASYNC"
statistics="true">
<encoding media-type="application/x-protostream"/>
</distributed-cache-configuration>
</cache-container>
</infinispan>

38

JSON

{
"infinispan" : {
"cache-container" : {
"distributed-cache-configuration" : {
"name" : "async-dist-cache-*",
"mode": "ASYNC",
"statistics": "true",
"encoding": {
"media-type": "application/x-protostream'

YAML

infinispan:
cacheContainer:
distributedCacheConfiguration:
name: "async-dist-cache-*"
mode: "ASYNC"
statistics: "true"
encoding:
mediaType: "application/x-protostream”

Using the preceding example, if you create a cache named "async-dist-cache-prod" then Infinispan
uses the configuration from the async-dist-cache-* template.

3.2.4. Cache templates from multiple XML files

Split cache configuration templates into multiple XML files for granular flexibility and reference
them with XML inclusions (XInclude).

Infinispan provides minimal support for the XInclude specification. This means
you cannot use the xpointer attribute, the xi:fallback element, text processing, or

o content negotiation.

You must also add the xmlns:xi="http://www.w3.0rg/2001/XInclude" namespace to
infinispan.xml to use XInclude.

39

Xinclude cache template

<infinispan xmlns:xi="http://www.w3.0rg/2001/XInclude">
<cache-container default-cache="cache-1">
<!-- References files that contain cache confiqguration templates. -->
<xi:include href="distributed-cache-template.xml" />
<xi:include href="replicated-cache-template.xml" />
</cache-container>
</infinispan>

Infinispan also provides an infinispan-config-fragment-13.0.xsd schema that you can use with
configuration fragments.

Configuration fragment schema

<local-cache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="urn:infinispan:config:13.0
https://infinispan.org/schemas/infinispan-config-fragment-13.0.xsd"
xmlns="urn:infinispan:config:13.0"
name="mycache"/>

Additional resources

* XInclude specification

3.3. Creating remote caches

When you create remote caches at runtime, Infinispan Server synchronizes your configuration
across the cluster so that all nodes have a copy. For this reason you should always create remote
caches dynamically with the following mechanisms:

¢ Infinispan Console
* Infinispan Command Line Interface (CLI)

e Hot Rod or HTTP clients

3.3.1. Default Cache Manager

Infinispan Server provides a default Cache Manager that controls the lifecycle of remote caches.
Starting Infinispan Server automatically instantiates the Cache Manager so you can create and
delete remote caches and other resources like Protobuf schema.

After you start Infinispan Server and add user credentials, you can view details about the Cache
Manager and get cluster information from Infinispan Console.

* Open 127.0.0.1:11222 in any browser.

You can also get information about the Cache Manager through the Command Line Interface (CLI)
or REST API:

40

CLI

Run the describe command in the default container.

[//containers/default]> describe

REST
Open 127.0.0.1:11222/rest/v2/cache-managers/default/ in any browser.

Default Cache Manager configuration

XML

<infinispan>
<!-- Creates a Cache Manager named "default" and enables metrics. -->
<cache-container name="default"
statistics="true">
<!-- Adds cluster transport that uses the default JGroups TCP stack. -->
<transport cluster="${infinispan.cluster.name:cluster}"
stack="${infinispan.cluster.stack:tcp}"
node-name="${infinispan.node.name:}"/>
<!-- Requires user permission to access caches and perform operations. -->
<security>
<authorization/>
</security>
</cache-container>
</infinispan>

JSON
{
"infinispan" : {
"jgroups" : {
"transport” : "org.infinispan.remoting.transport.jgroups.JGroupsTransport"”
b
"cache-container" : {
"name" : "default",
"statistics" : "true",
"transport" : {
"cluster" : "cluster",
"node-name" : "",
"stack" : "tcp"
Iy

"security" : {
"authorization" : {}
}
}
}
}

41

YAML

infinispan:
jgroups:
transport: "org.infinispan.remoting.transport.jgroups.JGroupsTransport"
cacheContainer:
name: "default"

statistics: "true"

transport:
cluster: "cluster"
nodeName: ""
stack: "tcp"
security:

authorization: ~

3.3.2. Creating caches with Infinispan Console

Use Infinispan Console to create remote caches in an intuitive visual interface from any web
browser

Prerequisites

* Create a Infinispan user with admin permissions.
« Start at least one Infinispan Server instance.

* Have a Infinispan cache configuration.

Procedure

1. Open 127.0.0.1:11222/console/ in any browser.

2. Select Create Cache and follow the steps as Infinispan Console guides you through the process.

3.3.3. Creating remote caches with the Infinispan CLI
Use the Infinispan Command Line Interface (CLI) to add remote caches on Infinispan Server.

Prerequisites

* Create a Infinispan user with admin permissions.
« Start at least one Infinispan Server instance.

» Have a Infinispan cache configuration.

Procedure

1. Start the CLI and enter your credentials when prompted.
bin/cli.sh

2. Use the create cache command to create remote caches.

For example, create a cache named "mycache"” from a file named mycache.xml as follows:

42

create cache --file=mycache.xml mycache

Verification

1. List all remote caches with the 1s command.

1s caches
mycache

2. View cache configuration with the describe command.

describe caches/mycache

3.3.4. Creating remote caches from Hot Rod clients

Use the Infinispan Hot Rod API to create remote caches on Infinispan Server from Java, C++,
.NET/CH#, JS clients and more.

This procedure shows you how to use Hot Rod Java clients that create remote caches on first access.
You can find code examples for other Hot Rod clients in the Infinispan Tutorials.

Prerequisites

* Create a Infinispan user with admin permissions.
« Start at least one Infinispan Server instance.

* Have a Infinispan cache configuration.

Procedure

* Invoke the remoteCache() method as part of your the ConfigurationBuilder.

* Set the configuration or configuration_uri properties in the hotrod-client.properties file on
your classpath.

ConfigurationBuilder

File file = new File("path/to/infinispan.xml")

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.remoteCache("another-cache")
.configuration("<distributed-cache name=\"another-cache\"/>");

builder.remoteCache("my.other.cache")
.configurationURI(file.toURI());

43

hotrod-client.properties

infinispan.client.hotrod.cache.another-cache.configuration=<distributed-cache
name=\"another-cache\"/>
infinispan.client.hotrod.cache.[my.other.cache].configuration_uri=file:///path/to/infi
nispan.xml

o If the name of your remote cache contains the . character, you must enclose it in
square brackets when using hotrod-client.properties files.

Additional resources

* Hot Rod Client Configuration

» org.infinispan.client.hotrod.configuration.RemoteCacheConfigurationBuilder

3.3.5. Creating remote caches with the REST API

Use the Infinispan REST API to create remote caches on Infinispan Server from any suitable HTTP
client.

Prerequisites

* Create a Infinispan user with admin permissions.
« Start at least one Infinispan Server instance.

» Have a Infinispan cache configuration.

Procedure

» Invoke POST requests to /rest/v2/caches/<cache_name> with cache configuration in the payload.

Additional resources

* Creating and Managing Caches with the REST API

3.4. Creating embedded caches

Infinispan provides an EmbeddedCacheManager API that lets you control both the Cache Manager and
embedded cache lifecycles programmatically.

3.4.1. Adding Infinispan to your project
Add Infinispan to your project to create embedded caches in your applications.

Prerequisites

* Configure your project to get Infinispan artifacts from the Maven repository.

Procedure

* Add the infinispan-core artifact as a dependency in your pom.xml as follows:

44

<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-core</artifactId>
</dependency>
</dependencies>

3.4.2. Configuring embedded caches

Infinispan provides a GlobalConfigurationBuilder API that controls the cache manager and a
ConfigurationBuilder API that configures embedded caches.

Prerequisites

* Add the infinispan-core artifact as a dependency in your pom. xml.

Procedure

1. Initialize the default cache manager so you can add embedded caches.
2. Add at least one embedded cache with the ConfigurationBuilder APIL

3. Invoke the getOrCreateCache() method that either creates embedded caches on all nodes in the
cluster or returns caches that already exist.

// Set up a clustered cache manager.

GlobalConfigurationBuilder global = GlobalConfigurationBuilder.

defaultClusteredBuilder();

// Initialize the default cache manager.

DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());

// Create a distributed cache with synchronous replication.

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.clustering().cacheMode(CacheMode.DIST_SYNC);

// Obtain a volatile cache.

Cache<String, String> cache = cacheManager.administration().withFlags

(CacheContainerAdmin.AdminFlag.VOLATILE).getOrCreateCache("myCache", builder.build());

Additional resources

* EmbeddedCacheManager
* EmbeddedCacheManager Configuration
* org.infinispan.configuration.global.GlobalConfiguration

» org.infinispan.configuration.cache.ConfigurationBuilder

45

Chapter 4. Enabling and configuring
Infinispan statistics and JMX monitoring

Infinispan can provide Cache Manager and cache statistics as well as export JMX MBeans.

4.1. Enabling statistics in embedded caches

Configure Infinispan to export statistics for the cache manager and embedded caches.

Procedure

1. Open your Infinispan configuration for editing.
2. Add the statistics="true" attribute or the .statistics(true) method.

3. Save and close your Infinispan configuration.

Embedded cache statistics

XML

<infinispan>
<cache-container statistics="true">
<distributed-cache statistics="true"/>
<replicated-cache statistics="true"/>
</cache-container>
</infinispan>

GlobalConfigurationBuilder

GlobalConfigurationBuilder global = GlobalConfigurationBuilder.
defaultClusteredBuilder().cacheContainer().statistics(true);
DefaultCacheManager cacheManager = new DefaultCacheManager(global.build());

Configuration builder = new ConfigurationBuilder();
builder.statistics().enable();

4.2. Enabling statistics in remote caches

Infinispan Server automatically enables statistics for the default cache manager. However, you
must explicitly enable statistics for your caches.

Procedure

1. Open your Infinispan configuration for editing.
2. Add the statistics attribute or field and specify true as the value.

3. Save and close your Infinispan configuration.

46

Remote cache statistics

XML

<distributed-cache statistics="true" />

JSON

{
"distributed-cache": {
"statistics": "true"

}
}

YAML

distributedCache:
statistics: true

4.3. Enabling Hot Rod client statistics

Hot Rod Java clients can provide statistics that include remote cache and near-cache hits and misses
as well as connection pool usage.

Procedure

1. Open your Hot Rod Java client configuration for editing.
2. Set true as the value for the statistics property or invoke the statistics().enable() methods.

3. Export JMX MBeans for your Hot Rod client with the jmx and jmx_domain properties or invoke the
jmxEnable() and jmxDomain() methods.

4. Save and close your client configuration.

Hot Rod Java client statistics

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.statistics().enable()

.jmxEnable()

. jmxDomain("my.domain.org")

.addServer()

.host("127.0.0.1")

.port(11222);
RemoteCacheManager remoteCacheManager = new RemoteCacheManager(builder.build());

47

hotrod-client.properties

true

infinispan.client.hotrod.statistics
infinispan.client.hotrod.jmx = true
infinispan.client.hotrod.jmx_domain = my.domain.org

4.4. Configuring Infinispan metrics

Infinispan generates metrics that are compatible with the MicroProfile Metrics API.
* Gauges provide values such as the average number of nanoseconds for write operations or JVM
uptime.
* Histograms provide details about operation execution times such as read, write, and remove

times.

By default, Infinispan generates gauges when you enable statistics but you can also configure it to
generate histograms.

Procedure

1. Open your Infinispan configuration for editing.

2. Add the metrics element or object to the cache container.

3. Enable or disable gauges with the gauges attribute or field.

4. Enable or disable histograms with the histograms attribute or field.

5. Save and close your client configuration.

Metrics configuration

XML

<infinispan>
<cache-container statistics="true">
<metrics gauges="true"
histograms="true" />
</cache-container>
</infinispan>

48

JSON

{
"infinispan" : {
"cache-container" : {
"statistics" : "true",
"metrics" : {
"gauges" : "true",
"histograms" : "true"
}
}
}
}
YAML

infinispan:
cacheContainer:
statistics: "true"
metrics:
gauges: "true"
histograms: "true"

GlobalConfigurationBuilder

GlobalConfiguration globalConfig = new GlobalConfigurationBuilder()
//Computes and collects statistics for the Cache Manager.
.statistics().enable()

//Exports collected statistics as gauge and histogram metrics.
.metrics().qauges(true).histograms(true)
.build();

Verification

Infinispan Server exposes statistics through the metrics endpoint. You can collect metrics with any
monitoring tool that supports the OpenMetrics format, such as Prometheus.

Infinispan metrics are provided at the vendor scope. Metrics related to the JVM are provided in the
base scope.

You can retrieve metrics from Infinispan Server as follows:

$ curl -v http://localhost:11222/metrics

To retrieve metrics in MicroProfile JSON format, do the following:

$ curl --header "Accept: application/json" http://localhost:11222/metrics

49

For embedded caches, you must add the necessary MicroProfile API and provider JARs to your
classpath to export Infinispan metrics.

Additional resources

* Eclipse MicroProfile Metrics

4.5. Registering JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform
administrative operations. You must also enable statistics otherwise Infinispan provides 0 values
for all statistic attributes in JMX MBeans.

Procedure

1. Open your Infinispan configuration for editing.

2. Add the jmx element or object to the cache container and specify true as the value for the
enabled attribute or field.

3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if
required.

4. Save and close your client configuration.

JMX configuration

XML

<infinispan>
<cache-container statistics="true">
<jmx enabled="true"
domain="example.com"/>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {

"statistics" : "true",
"gmx" o {
"enabled" : "true",
"domain" : "example.com"
}

50

YAML

infinispan:
cacheContainer:
statistics: "true"
jmx:
enabled: "true"
domain: "example.com"

GlobalConfigurationBuilder

GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()
.jmx().enable()
.domain("org.mydomain");

4.5.1. Enabling JMX remote ports

Provide unique remote JMX ports to expose Infinispan MBeans through connections in
JMXServiceURL format.

Infinispan Server does not expose JMX remotely by using the single port endpoint.
o If you want to remotely access the Infinispan Server through JMX, you must enable
a remote port.

You can enable remote JMX ports using one of the following approaches:

* Enable remote JMX ports that require authentication to one of the Infinispan Server security
realms.

* Enable remote JMX ports manually using the standard Java management configuration options.

Prerequisites

* For remote JMX with authentication, define user roles using the default security realm. Users
must have controlRole with read/write access or the monitorRole with read-only access to access
any JMX resources.

Procedure

Start Infinispan Server with a remote JMX port enabled using one of the following ways: * Enable
remote JMX through port 9999.

+

bin/server.sh --jmx 9999

A Using remote JMX with SSL disabled is not intended for production environments.

51

* Pass the following system properties to Infinispan Server at startup.

bin/server.sh -Dcom.sun.management.jmxremote.port=9999
-Dcom.sun.management. jmxremote.authenticate=false
-Dcom. sun.management. jmxremote.ssl=false

Enabling remote JMX with no authentication or SSL is not secure and not
A recommended in any environment. Disabling authentication and SSL allows
unauthorized users to connect to your server and access the data hosted there.

Additional resources

* Creating security realms

4.5.2. Infinispan MBeans
Infinispan exposes JMX MBeans that represent manageable resources.

org.infinispan:type=Cache
Attributes and operations available for cache instances.

org.infinispan:type=CacheManager
Attributes and operations available for cache managers, including Infinispan cache and cluster
health statistics.

For a complete list of available JMX MBeans along with descriptions and available operations and
attributes, see the Infinispan JMX Components documentation.

Additional resources

* Infinispan JMX Components

4.5.3. Registering MBeans in custom MBean servers

Infinispan includes an MBeanServerLookup interface that you can use to register MBeans in custom
MBeanServer instances.

Prerequisites

* Create an implementation of MBeanServerLookup so that the getMBeanServer () method returns the
custom MBeanServer instance.

* Configure Infinispan to register JMX MBeans.

Procedure

1. Open your Infinispan configuration for editing.
2. Add the mbean-server-lookup attribute or field to the JMX configuration for the cache manager.
3. Specify fully qualified name (FQN) of your MBeanServerLookup implementation.

4. Save and close your client configuration.

52

JMX MBean server lookup configuration

XML

<infinispan>
<cache-container statistics="true">
<jmx enabled="true"
domain="example.com"
mbean-server-lookup="com.example.MyMBeanServerLookup"/>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {

"statistics" : "true",
"imx" e {
"enabled" : "true",
"domain" : "example.com",
"mbean-server-lookup” : "com.example.MyMBeanServerLookup"
}
}
}
}
YAML
infinispan:
cacheContainer:
statistics: "true"
jmx:

enabled: "true"
domain: "example.com"
mbeanServerLookup: "com.example.MyMBeanServerLookup"

GlobalConfigurationBuilder

GlobalConfiguration global = GlobalConfigurationBuilder.defaultClusteredBuilder()

.jmx().enable()
.domain("org.mydomain")
.mBeanServerLookup(new com.acme.MyMBeanServerLookup());

53

Chapter 5. Configuring JVM memory usage

Control how Infinispan stores data in JVM memory by:

* Managing JVM memory usage with eviction that automatically removes data from caches.
* Adding lifespan and maximum idle times to expire entries and prevent stale data.

* Configuring Infinispan to store data in off-heap, native memory.

5.1. Default memory configuration

By default Infinispan stores cache entries as objects in the JVM heap. Over time, as applications add
entries, the size of caches can exceed the amount of memory that is available to the JVM. Likewise,
if Infinispan is not the primary data store, then entries become out of date which means your
caches contain stale data.

XML

<distributed-cache>
<memory storage="HEAP"/>
</distributed-cache>

JSON
{
"distributed-cache": {
"memory" : {
"storage": "HEAP"
}
}
+
YAML
distributedCache:
memory :

storage: "HEAP"

5.2. Eviction and expiration

Eviction and expiration are two strategies for cleaning the data container by removing old, unused
entries. Although eviction and expiration are similar, they have some important differences.

@ Eviction lets Infinispan control the size of the data container by removing entries when the
container becomes larger than a configured threshold.

@ Expiration limits the amount of time entries can exist. Infinispan uses a scheduler to
periodically remove expired entries. Entries that are expired but not yet removed are

54

immediately removed on access; in this case get() calls for expired entries return "null" values.
@ Eviction is local to Infinispan nodes.
@ Expiration takes place across Infinispan clusters.
@ You can use eviction and expiration together or independently of each other.

@ You can configure eviction and expiration declaratively in infinispan.xml to apply cache-wide
defaults for entries.

@ You can explicitly define expiration settings for specific entries but you cannot define eviction
on a per-entry basis.

@ You can manually evict entries and manually trigger expiration.

5.3. Eviction with Infinispan caches

Eviction lets you control the size of the data container by removing entries from memory in one of
two ways:

e Total number of entries (max-count).

* Maximum amount of memory (max-size).

Eviction drops one entry from the data container at a time and is local to the node on which it
occurs.

Eviction removes entries from memory but not from persistent cache stores. To
o ensure that entries remain available after Infinispan evicts them, and to prevent
inconsistencies with your data, you should configure persistent storage.

When you configure memory, Infinispan approximates the current memory usage of the data
container. When entries are added or modified, Infinispan compares the current memory usage of
the data container to the maximum size. If the size exceeds the maximum, Infinispan performs
eviction.

Eviction happens immediately in the thread that adds an entry that exceeds the maximum size.

5.3.1. Eviction strategies
When you configure Infinispan eviction you specify:

e The maximum size of the data container.

* A strategy for removing entries when the cache reaches the threshold.
You can either perform eviction manually or configure Infinispan to do one of the following:

* Remove old entries to make space for new ones.

» Throw ContainerFullException and prevent new entries from being created.

The exception eviction strategy works only with transactional caches that use 2 phase commits;
not with 1 phase commits or synchronization optimizations.

55

Refer to the schema reference for more details about the eviction strategies.

Infinispan includes the Caffeine caching library that implements a variation of the

o Least Frequently Used (LFU) cache replacement algorithm known as TinyLFU. For
off-heap storage, Infinispan uses a custom implementation of the Least Recently
Used (LRU) algorithm.

Additional resources

e Caffeine

* Infinispan configuration schema reference

5.3.2. Configuring maximum count eviction
Limit the size of Infinispan caches to a total number of entries.

Procedure

1. Open your Infinispan configuration for editing.

2. Specify the total number of entries that caches can contain before Infinispan performs eviction
with either the max-count attribute or maxCount() method.

3. Set one of the following as the eviction strategy to control how Infinispan removes entries with
the when-full attribute or whenFull() method.

o REMOVE Infinispan performs eviction. This is the default strategy.
> MANUAL You perform eviction manually for embedded caches.
o EXCEPTION Infinispan throws an exception instead of evicting entries.

4. Save and close your Infinispan configuration.

Maximum count eviction

In the following example, Infinispan removes an entry when the cache contains a total of 500
entries and a new entry is created:

XML

<distributed-cache>
<memory max-count="500" when-full="REMOVE"/>
</distributed-cache>

56

JSON

{

"distributed-cache" : {
"memory" : {
"max-count" : "500",
"when-full" : "REMOVE"

YAML

distributedCache:
memory:
maxCount: "500"
whenFull: "REMOVE"

ConfigurationBuilder

ConfiqurationBuilder builder = new ConfigurationBuilder();
builder.memory().maxCount(500).whenFull(EvictionStrategy.REMOVE);

Additional resources

* Infinispan configuration schema reference

» org.infinispan.configuration.cache.MemoryConfigurationBuilder
5.3.3. Configuring maximum size eviction
Limit the size of Infinispan caches to a maximum amount of memory.

Procedure

1. Open your Infinispan configuration for editing.

2. Specify application/x-protostream as the media type for cache encoding.

You must specify a binary media type to use maximum size eviction.

3. Configure the maximum amount of memory, in bytes, that caches can use before Infinispan

performs eviction with the max-size attribute or maxSize() method.

4. Optionally specify a byte unit of measurement.

The default is B (bytes). Refer to the configuration schema for supported units.

5. Set one of the following as the eviction strategy to control how Infinispan removes entries with

either the when-full attribute or whenFull() method.

o REMOVE Infinispan performs eviction. This is the default strategy.

o MANUAL You perform eviction manually for embedded caches.
o EXCEPTION Infinispan throws an exception instead of evicting entries.

6. Save and close your Infinispan configuration.

Maximum size eviction

In the following example, Infinispan removes an entry when the size of the cache reaches 1.5 GB
(gigabytes) and a new entry is created:

XML

<distributed-cache>
<encoding media-type="application/x-protostream"/>
<memory max-size="1.5GB" when-full="REMOVE"/>
</distributed-cache>

JSON

{
"distributed-cache" : {

"encoding" : {
"media-type" : "application/x-protostream"

Iy,

"memory" : {
"max-size" : "1.5GB",
"when-full" : "REMOVE"

YAML

distributedCache:
encoding:
mediaType: "application/x-protostream"
memory:
maxSize: "1.5GB"
whenFull: "REMOVE"

ConfigurationBuilder

ConfiqurationBuilder builder = new ConfigurationBuilder();
builder.encoding().mediaType("application/x-protostream")
.memory()
.maxSize("1.5G6B")
.whenFull(EvictionStrategy.REMOVE);

Additional resources

58

* Infinispan configuration schema reference
* org.infinispan.configuration.cache.EncodingConfiguration
+ org.infinispan.configuration.cache.MemoryConfigurationBuilder

* Cache Encoding and Marshalling

5.3.4. Manual eviction

If you choose the manual eviction strategy, Infinispan does not perform eviction. You must do so
manually with the evict() method.

You should use manual eviction with embedded caches only. For remote caches, you should always
configure Infinispan with the REMOVE or EXCEPTION eviction strategy.

o This configuration prevents a warning message when you enable passivation but
do not configure eviction.

XML

<distributed-cache>
<memory max-count="500" when-full="MANUAL"/>
</distributed-cache>

JSON

{
"distributed-cache" : {
"memory" : {
"max-count" : "500",
"when-full" : "MANUAL"

YAML

distributedCache:
memory :
maxCount: "500"
whenFull: "MANUAL"

59

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.encoding().mediaType("application/x-protostream")
.memory()
.maxSize("1.5G6B")
.whenFull(EvictionStrategy.REMOVE);

5.3.5. Passivation with eviction

Passivation persists data to cache stores when Infinispan evicts entries. You should always enable
eviction if you enable passivation, as in the following examples:

XML

<distributed-cache>
<persistence passivation="true">
<!-- Persistent storage configuration. -->
</persistence>
<memory max-count="100"/>
</distributed-cache>

JSON

{
"distributed-cache": {
"memory" : {
"max-count" : "100"
b
"persistence" : {
"passivation" : true
}
}
}

YAML

distributedCache:
memory :
maxCount: "100"
persistence:
passivation: "true"

ConfigurationBuilder
ConfigurationBuilder builder = new ConfigurationBuilder();

builder.memory().maxCount(100);
builder.persistence().passivation(true); //Persistent storage configuration

60

5.4. Expiration with lifespan and maximum idle

Expiration configures Infinispan to remove entries from caches when they reach one of the
following time limits:

Lifespan

Sets the maximum amount of time that entries can exist.

Maximum idle

Specifies how long entries can remain idle. If operations do not occur for entries, they become
idle.

o Maximum idle expiration does not currently support caches with persistent
storage.

If you use expiration and eviction with the EXCEPTION eviction strategy, entries that
o are expired, but not yet removed from the cache, count towards the size of the
data container.

5.4.1. How expiration works

When you configure expiration, Infinispan stores keys with metadata that determines when entries
expire.
» Lifespan uses a creation timestamp and the value for the 1ifespan configuration property.
* Maximum idle uses a last used timestamp and the value for the max-idle configuration
property.
Infinispan checks if lifespan or maximum idle metadata is set and then compares the values with

the current time.

If (creation + lifespan < currentTime) or (lastUsed + maxIdle < currentTime) then Infinispan
detects that the entry is expired.

Expiration occurs whenever entries are accessed or found by the expiration reaper.

For example, k1 reaches the maximum idle time and a client makes a Cache.get (k1) request. In this
case, Infinispan detects that the entry is expired and removes it from the data container. The
Cache.get (k1) request returns null.

Infinispan also expires entries from cache stores, but only with lifespan expiration. Maximum idle
expiration does not work with cache stores. In the case of cache loaders, Infinispan cannot expire
entries because loaders can only read from external storage.

o Infinispan adds expiration metadata as long primitive data types to cache entries.
This can increase the size of keys by as much as 32 bytes.

61

5.4.2. Expiration reaper

Infinispan uses a reaper thread that runs periodically to detect and remove expired entries. The
expiration reaper ensures that expired entries that are no longer accessed are removed.

The Infinispan ExpirationManager interface handles the expiration reaper and exposes the
processExpiration() method.

In some cases, you can disable the expiration reaper and manually expire entries by calling
processExpiration(); for instance, if you are using local cache mode with a custom application
where a maintenance thread runs periodically.

If you use clustered cache modes, you should never disable the expiration reaper.

o Infinispan always uses the expiration reaper when using cache stores. In this case
you cannot disable it.

Additional resources

« org.infinispan.configuration.cache.ExpirationConfigurationBuilder

 org.infinispan.expiration.ExpirationManager

5.4.3. Maximum idle and clustered caches

Because maximum idle expiration relies on the last access time for cache entries, it has some
limitations with clustered cache modes.

With lifespan expiration, the creation time for cache entries provides a value that is consistent
across clustered caches. For example, the creation time for k1 is always the same on all nodes.

For maximum idle expiration with clustered caches, last access time for entries is not always the
same on all nodes. To ensure that entries have the same relative access times across clusters,
Infinispan sends touch commands to all owners when keys are accessed.

The touch commands that Infinispan send have the following considerations:
» Cache.get() requests do not return until all touch commands complete. This synchronous

behavior increases latency of client requests.

* The touch command also updates the "recently accessed" metadata for cache entries on all
owners, which Infinispan uses for eviction.

» With scattered cache mode, Infinispan sends touch commands to all nodes, not just primary and

backup owners.

Additional information

* Maximum idle expiration does not work with invalidation mode.

* Iteration across a clustered cache can return expired entries that have exceeded the maximum
idle time limit. This behavior ensures performance because no remote invocations are
performed during the iteration. Also note that iteration does not refresh any expired entries.

62

5.4.4. Configuring lifespan and maximum idle times for caches
Set lifespan and maximum idle times for all entries in a cache.

Procedure

1. Open your Infinispan configuration for editing.

2. Specify the amount of time, in milliseconds, that entries can stay in the cache with the 1ifespan

attribute or lifespan() method.

3. Specify the amount of time, in milliseconds, that entries can remain idle after last access with

the max-idle attribute or maxIdle() method.

4. Save and close your Infinispan configuration.

Expiration for Infinispan caches

In the following example, Infinispan expires all cache entries after 5 seconds or 1 second after the

last access time, whichever happens first:

XML

<replicated-cache>
<expiration lifespan="5000" max-idle="1000" />
</replicated-cache>

JSON
{
"replicated-cache" : {
"expiration" : {
"lifespan" : "5000",
"max-idle" : "1000"
}
}
+
YAML
replicatedCache:

expiration:
lifespan: "5000"
maxIdle: "1000"

ConfigurationBuilder

ConfigurationBuilder builder = new ConfiqurationBuilder();
builder.expiration().lifespan(5000, TimeUnit.MILLISECONDS)
.maxIdle(1000, TimeUnit.MILLISECONDS);

63

5.4.5. Configuring lifespan and maximum idle times per entry

Specify lifespan and maximum idle times for individual entries. When you add lifespan and
maximum idle times to entries, those values take priority over expiration configuration for caches.

When you explicitly define lifespan and maximum idle time values for cache

o entries, Infinispan replicates those values across the cluster along with the cache
entries. Likewise, Infinispan writes expiration values along with the entries to
persistent storage.

Procedure

* For remote caches, you can add lifespan and maximum idle times to entries interactively with
the Infinispan Console.

With the Infinispan Command Line Interface (CLI), use the --max-idle= and --ttl= arguments
with the put command.

* For both remote and embedded caches, you can add lifespan and maximum idle times with
cache.put() invocations.

//Lifespan of 5 seconds.
//Maximum idle time of 1 second.
cache.put("hello", "world", 5, TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

//Lifespan is disabled with a value of -1.
//Maximum idle time of 1 second.
cache.put("hello", "world", -1, TimeUnit.SECONDS, 1, TimeUnit.SECONDS);

Additional resources

 org.infinispan.configuration.cache.ExpirationConfigurationBuilder

* org.infinispan.expiration.ExpirationManager

5.5.JVM heap and off-heap memory

Infinispan stores cache entries in JVM heap memory by default. You can configure Infinispan to use
off-heap storage, which means that your data occupies native memory outside the managed JVM
memory space.

The following diagram is a simplified illustration of the memory space for a JVM process where
Infinispan is running:

64

Host memory (RAM)

JVM process
JVM heap Off-heap
ge::ll:l:t?on Old generation Metaspace Cache entries

Figure 6. JVM memory space

JVM heap memory

The heap is divided into young and old generations that help keep referenced Java objects and
other application data in memory. The GC process reclaims space from unreachable objects,
running more frequently on the young generation memory pool.

When Infinispan stores cache entries in JVM heap memory, GC runs can take longer to complete as
you start adding data to your caches. Because GC is an intensive process, longer and more frequent
runs can degrade application performance.

Off-heap memory

Off-heap memory is native available system memory outside JVM memory management. The JVM
memory space diagram shows the Metaspace memory pool that holds class metadata and is allocated
from native memory. The diagram also represents a section of native memory that holds Infinispan
cache entries.

Off-heap memory:

* Uses less memory per entry.

* Improves overall JVM performance by avoiding Garbage Collector (GC) runs.

One disadvantage, however, is that JVM heap dumps do not show entries stored in off-heap
memory.

5.5.1. Off-heap data storage

When you add entries to off-heap caches, Infinispan dynamically allocates native memory to your
data.

Infinispan hashes the serialized byte[] for each key into buckets that are similar to a standard Java
HashMap. Buckets include address pointers that Infinispan uses to locate entries that you store in off-
heap memory.

65

Even though Infinispan stores cache entries in native memory, run-time
operations require JVM heap representations of those objects. For instance,

o cache.get() operations read objects into heap memory before returning. Likewise,
state transfer operations hold subsets of objects in heap memory while they take
place.

Object equality

Infinispan determines equality of Java objects in off-heap storage using the serialized byte[]
representation of each object instead of the object instance.

Data consistency

Infinispan uses an array of locks to protect off-heap address spaces. The number of locks is twice
the number of cores and then rounded to the nearest power of two. This ensures that there is an
even distribution of ReadWiritelock instances to prevent write operations from blocking read
operations.

5.5.2. Configuring off-heap memory
Configure Infinispan to store cache entries in native memory outside the JVM heap space.

Procedure

1. Open your Infinispan configuration for editing.
2. Set OFF_HEAP as the value for the storage attribute or storage() method.
3. Set a boundary for the size of the cache by configuring eviction.

4. Save and close your Infinispan configuration.

Off-heap storage

Infinispan stores cache entries as bytes in native memory. Eviction happens when there are 100
entries in the data container and Infinispan gets a request to create a new entry:

XML

<replicated-cache>
<memory storage="OFF_HEAP" max-count="500"/>
</replicated-cache>

66

JSON

{
"replicated-cache" : {
"memory" : {
"storage" : "OBJECT",
"max-count" : "500"

}
}
}

YAML

replicatedCache:
memory :
storage: "OFF_HEAP"
maxCount: "500"

ConfigurationBuilder

ConfiqurationBuilder builder = new ConfigurationBuilder();
builder.memory().storage(StorageType.OFF_HEAP).maxCount(500);

Additional resources

* Infinispan configuration schema reference

» org.infinispan.configuration.cache.MemoryConfigurationBuilder

Chapter 6. Configuring persistent storage

Infinispan uses cache stores and loaders to interact with persistent storage.

Durability

Adding cache stores allows you to persist data to non-volatile storage so it survives restarts.

Write-through caching

Configuring Infinispan as a caching layer in front of persistent storage simplifies data access for
applications because Infinispan handles all interactions with the external storage.

Data overflow

Using eviction and passivation techniques ensures that Infinispan keeps only frequently used
data in-memory and writes older entries to persistent storage.

6.1. Passivation

Passivation configures Infinispan to write entries to cache stores when it evicts those entries from
memory. In this way, passivation ensures that only a single copy of an entry is maintained, either
in-memory or in a cache store, which prevents unnecessary and potentially expensive writes to
persistent storage.

Activation is the process of restoring entries to memory from the cache store when there is an
attempt to access passivated entries. For this reason, when you enable passivation, you must
configure cache stores that implement both CacheWiriter and CachelLoader interfaces so they can
write and load entries from persistent storage.

When Infinispan evicts an entry from the cache, it notifies cache listeners that the entry is
passivated then stores the entry in the cache store. When Infinispan gets an access request for an
evicted entry, it lazily loads the entry from the cache store into memory and then notifies cache
listeners that the entry is activated.

» Passivation uses the first cache loader in the Infinispan configuration and
ignores all others.

 Passivation is not supported with:

o Transactional stores. Passivation writes and removes entries from the store
o outside the scope of the actual Infinispan commit boundaries.

o Shared stores. Shared cache stores require entries to always exist in the
store for other owners. For this reason, passivation is not supported
because entries cannot be removed.

If you enable passivation with transactional stores or shared stores, Infinispan
throws an exception.

68

6.1.1. How passivation works

Passivation disabled

Writes to data in memory result in writes to persistent storage.

If Infinispan evicts data from memory, then data in persistent storage includes entries that are
evicted from memory. In this way persistent storage is a superset of the in-memory cache.

If you do not configure eviction, then data in persistent storage provides a copy of data in memory.

Passivation enabled

Infinispan adds data to persistent storage only when it evicts data from memory.

When Infinispan activates entries, it restores data in memory and deletes data from persistent
storage. In this way, data in memory and data in persistent storage form separate subsets of the
entire data set, with no intersection between the two.

Entries in persistent storage can become stale when using shared cache stores.
This occurs because Infinispan does not delete passivated entries from shared
o cache stores when they are activated.

Values are updated in memory but previously passivated entries remain in
persistent storage with out of date values.

The following table shows data in memory and in persistent storage after a series of operations:

Operation

Insert k1.

Insert k2.

Eviction thread runs
and evicts k1.

Read k1.

Eviction thread runs
and evicts k2.

Remove k2.

Passivation disabled Passivation enabled

Memory: k1
Disk: k1

Memory: k1, k2
Disk: k1, k2

Memory: k2
Disk: k1, k2

Memory: k1, k2
Disk: k1, k2

Memory: k1
Disk: k1, k2

Memory: k1
Disk: k1

Memory: k1
Disk: -

Memory: k1, k2
Disk: -
Memory: k2
Disk: k1
Memory: k1, k2
Disk: -
Memory: k1
Disk: k2

Memory: k1
Disk: -

6.2. Write-through cache stores

Passivation enabled
with shared cache
store

Memory: k1
Disk: -
Memory: k1, k2
Disk: -
Memory: k2
Disk: k1
Memory: k1, k2
Disk: k1
Memory: k1
Disk: k1, k2

Memory: k1
Disk: k1

Write-through is a cache writing mode where writes to memory and writes to cache stores are
synchronous. When a client application updates a cache entry, in most cases by invoking

69

Cache.put(), Infinispan does not return the call until it updates the cache store. This cache writing
mode results in updates to the cache store concluding within the boundaries of the client thread.

The primary advantage of write-through mode is that the cache and cache store are updated
simultaneously, which ensures that the cache store is always consistent with the cache.

However, write-through mode can potentially decrease performance because the need to access
and update cache stores directly adds latency to cache operations.

Write-through configuration

Infinispan uses write-through mode unless you explicitly add write-behind configuration to your
caches. There is no separate element or method for configuring write-through mode.

For example, the following configuration adds a file-based store to the cache that implicitly uses
write-through mode:

<distributed-cache>
<persistence passivation="false">
<file-store fetch-state="true">
<index path="path/to/index" />
<data path="path/to/data" />
</file-store>
</persistence>
</distributed-cache>

6.3. Write-behind cache stores

Write-behind is a cache writing mode where writes to memory are synchronous and writes to
cache stores are asynchronous.

When clients send write requests, Infinispan adds those operations to a modification queue.
Infinispan processes operations as they join the queue so that the calling thread is not blocked and
the operation completes immediately.

If the number of write operations in the modification queue increases beyond the size of the queue,
Infinispan adds those additional operations to the queue. However, those operations do not
complete until Infinispan processes operations that are already in the queue.

For example, calling Cache.putAsync returns immediately and the Stage also completes immediately
if the modification queue is not full. If the modification queue is full, or if Infinispan is currently
processing a batch of write operations, then Cache.putAsync returns immediately and the Stage
completes later.

Write-behind mode provides a performance advantage over write-through mode because cache
operations do not need to wait for updates to the underlying cache store to complete. However,
data in the cache store remains inconsistent with data in the cache until the modification queue is
processed. For this reason, write-behind mode is suitable for cache stores with low latency, such as

70

unshared and local file-based cache stores, where the time between the write to the cache and the

write to the cache store is as small as possible.

Write-behind configuration

XML

<distributed-cache>
<persistence>
<table-jdbc-store xmlns="urn:infinispan:config:store:sql:13.0"
dialect="H2"
shared="true"
table-name="books">
<connection-pool connection-url="jdbc:h2:mem:infinispan"
username="sa"
password="changeme"
driver="org.h2.Driver"/>
<write-behind modification-queue-size="2048"
fail-silently="true"/>
</table-jdbc-store>
</persistence>
</distributed-cache>

JSON

{

"distributed-cache": {
"persistence" : {
"table-jdbc-store": {
"dialect": "H2",
"shared": "true",
"table-name": "books",
"connection-pool": {
"connection-url": "jdbc:h2:mem:infinispan",
"driver": "org.h2.Driver",
"username": "sa",
"password": "changeme"

1

"write-behind" : {
"modification-queue-size" : "2048",
"fail-silently" : true

¥

}
}
}

71

YAML

distributedCache:
persistence:
tableldbcStore:

dialect: "H2"

shared: "true"

tableName: "books"

connectionPool:
connectionUrl: "jdbc:h2:mem:infinispan”
driver: "org.h2.Driver"
username: "sa"
password: "changeme"

writeBehind:
modificationQueueSize: "2048"
failSilently: "true"

ConfigurationBuilder

ConfigurationBuilder builder = new ConfiqurationBuilder();
builder.persistence()

.async()
.modificationQueueSize(2048)
.failSilently(true);

Failing silently

Write-behind configuration includes a fail-silently parameter that controls what happens when
either the cache store is unavailable or the modification queue is full.

o If fail-silently="true" then Infinispan logs WARN messages and rejects write operations.

o If fail-silently="false" then Infinispan throws exceptions if it detects the cache store is
unavailable during a write operation. Likewise if the modification queue becomes full,
Infinispan throws an exception.

In some cases, data loss can occur if Infinispan restarts and write operations exist in the
modification queue. For example the cache store goes offline but, during the time it takes to
detect that the cache store is unavailable, write operations are added to the modification queue
because it is not full. If Infinispan restarts or otherwise becomes unavailable before the cache
store comes back online, then the write operations in the modification queue are lost because
they were not persisted.

6.4. Segmented cache stores

Cache stores can organize data into hash space segments to which keys map.

Segmented stores increase read performance for bulk operations; for example, streaming over data
(Cache.size, Cache.entrySet.stream), pre-loading the cache, and doing state transfer operations.

72

However, segmented stores can also result in loss of performance for write operations. This
performance loss applies particularly to batch write operations that can take place with
transactions or write-behind stores. For this reason, you should evaluate the overhead for write
operations before you enable segmented stores. The performance gain for bulk read operations
might not be acceptable if there is a significant performance loss for write operations.

The number of segments you configure for cache stores must match the number of
segments you define in the Infinispan configuration with the
o clustering.hash.numSegments parameter.

If you change the numSegments parameter in the configuration after you add a
segmented cache store, Infinispan cannot read data from that cache store.

6.5. Shared cache stores

Infinispan cache stores can be local to a given node or shared across all nodes in the cluster. By
default, cache stores are local (shared="false").

* Local cache stores are unique to each node; for example, a file-based cache store that persists
data to the host filesystem.

Local cache stores can fetch state and purge on startup to avoid loading stale entries from
persistent storage.

» Shared cache stores allow multiple nodes to use the same persistent storage; for example, a
JDBC cache store that allows multiple nodes to access the same database.

Shared cache stores ensure that only the primary owner write to persistent storage, instead of
backup nodes performing write operations for every modification.

Never configure shared cache stores to fetch state and purge on startup. Fetching

o state with shared cache stores results in performance issues and longer cluster
start times. Purging deletes data, which is not typically the desired behavior for
persistent storage.

Local cache store

<persistence>
<store shared="false"
fetch-state="true"
purge="true"/>
</persistence>

73

Shared cache store

<persistence>
<store shared="true"
fetch-state="false"
purge="false"/>
</persistence>

Additional resources

* Infinispan Configuration Schema

6.6. Transactions with persistent cache stores

Infinispan supports transactional operations with JDBC-based cache stores only. To configure
caches as transactional, you set transactional=true to keep data in persistent storage synchronized
with data in memory.

For all other cache stores, Infinispan does not enlist cache loaders in transactional operations. This
can result in data inconsistency if transactions succeed in modifying data in memory but do not
completely apply changes to data in the cache store. In these cases manual recovery is not possible
with cache stores.

6.7. Global persistent location

Infinispan preserves global state so that it can restore cluster topology and cached data after
restart.

Remote caches

Infinispan Server saves cluster state to the $ISPN_HOME/server/data directory.

You should never delete or modify the server/data directory or its content.
Infinispan restores cluster state from this directory when you restart your server

o instances.

Changing the default configuration or directly modifying the server/data directory
can cause unexpected behavior and lead to data loss.

Embedded caches

Infinispan defaults to the user.dir system property as the global persistent location. In most cases
this is the directory where your application starts.

For clustered embedded caches, such as replicated or distributed, you should always enable and
configure a global persistent location to restore cluster topology.

You should never configure an absolute path for a file-based cache store that is outside the global
persistent location. If you do, Infinispan writes the following exception to logs:

74

ISPN000558: "The store location 'foo' is not a child of the global persistent location
lbarlll

6.7.1. Configuring the global persistent location

Enable and configure the location where Infinispan stores global state for clustered embedded
caches.

Infinispan Server enables global persistence and configures a default location. You
o should not disable global persistence or change the default configuration for
remote caches.

Prerequisites

* Add Infinispan to your project.

Procedure

1. Enable global state in one of the following ways:
o Add the global-state element to your Infinispan configuration.
o Call the globalState().enable() methods in the GlobalConfigurationBuilder APIL

2. Define whether the global persistent location is unique to each node or shared between the
cluster.

Location type Configuration
Unique to each node persistent-location element or persistentlLocation() method

Shared between the shared-persistent-location element or
cluster sharedPersistentLocation(String) method

3. Set the path where Infinispan stores cluster state.
For example, file-based cache stores the path is a directory on the host filesystem.
Values can be:

o Absolute and contain the full location including the root.
- Relative to a root location.
4. If you specify a relative value for the path, you must also specify a system property that resolves

to a root location.

For example, on a Linux host system you set global/state as the path. You also set the my.data
property that resolves to the /opt/data root location. In this case Infinispan uses
/opt/data/qglobal/state as the global persistent location.

Global persistent location configuration

75

XML

<infinispan>
<cache-container>
<global-state>
<persistent-location path="global/state" relative-to="my.data"/>
</qlobal-state>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {
"global-state": {
"persistent-location” : {
"path" : "global/state",
"relative-to" : "my.data"

YAML

cacheContainer:
globalState:
persistentLocation:
path: "global/state"
relativeTo : "my.data"

GlobalConfigurationBuilder

new GlobalConfigurationBuilder().globalState()
.enable()
.persistentlLocation("global/state", "my.data");

Additional resources

* Infinispan configuration schema

* org.infinispan.configuration.global.GlobalStateConfiguration

6.8. File-based cache stores

File-based cache stores provide persistent storage on the local host filesystem where Infinispan is
running. For clustered caches, file-based cache stores are unique to each Infinispan node.

76

Never use filesystem-based cache stores on shared file systems, such as an NFS or
Samba share, because they do not provide file locking capabilities and data

A corruption can occur.

Additionally if you attempt to use transactional caches with shared file systems,
unrecoverable failures can happen when writing to files during the commit phase.

Soft-Index File Stores

SoftIndexFileStore is the default implementation for file-based cache stores and stores data in a set
of append-only files.

When append-only files:

» Reach their maximum size, Infinispan creates a new file and starts writing to it.

* Reach the compaction threshold of less than 50% usage, Infinispan overwrites the entries to a
new file and then deletes the old file.

B+ trees

To improve performance, append-only files in a SoftIndexFileStore are indexed using a B+ Tree
that can be stored both on disk and in memory. The in-memory index uses Java soft references to
ensure it can be rebuilt if removed by Garbage Collection (GC) then requested again.

Because SoftIndexFileStore uses Java soft references to keep indexes in memory, it helps prevent
out-of-memory exceptions. GC removes indexes before they consume too much memory while still
falling back to disk.

You can configure any number of B+ trees with the segments attribute on the index element
declaratively or with the indexSegments() method programmatically. By default Infinispan creates
up to 16 B+ trees, which means there can be up to 16 indexes. Having multiple indexes prevents
bottlenecks from concurrent writes to an index and reduces the number of entries that Infinispan
needs to keep in memory. As it iterates over a soft-index file store, Infinispan reads all entries in an
index at the same time.

Each entry in the B+ tree is a node. By default, the size of each node is limited to 4096 bytes.
SoftIndexFileStore throws an exception if keys are longer after serialization occurs.

Segmentation

Soft-index file stores are always segmented.

o The AdvancedStore.purgeExpired() method is not implemented in
SoftIndexFileStore.

Single File Cache Stores
o Single file cache stores are now deprecated and planned for removal.

Single File cache stores, SingleFileStore, persist data to file. Infinispan also maintains an in-

77

memory index of keys while keys and values are stored in the file.

Because SingleFileStore keeps an in-memory index of keys and the location of values, it requires
additional memory, depending on the key size and the number of keys. For this reason,
SingleFileStore is not recommended for use cases where the keys are larger or there can be a
larger number of them.

In some cases, SingleFileStore can also become fragmented. If the size of values continually
increases, available space in the single file is not used but the entry is appended to the end of the
file. Available space in the file is used only if an entry can fit within it. Likewise, if you remove all
entries from memory, the single file store does not decrease in size or become defragmented.

Segmentation

Single file cache stores are segmented by default with a separate instance per segment, which
results in multiple directories. Each directory is a number that represents the segment to which the
data maps.

6.8.1. Configuring file-based cache stores
Add file-based cache stores to Infinispan to persist data on the host filesystem.

Prerequisites

* Enable global state and configure a global persistent location if you are configuring embedded
caches.

Procedure

1. Add the persistence element to your cache configuration.

2. Optionally specify true as the value for the passivation attribute to write to the file-based cache
store only when data is evicted from memory.

3. Include the file-store element and configure attributes as appropriate.
4. Specify false as the value for the shared attribute.
File-based cache stores should always be unique to each Infinispan instance. If you want to use

the same persistent across a cluster, configure shared storage such as a JDBC string-based cache
store .

5. Configure the index and data elements to specify the location where Infinispan creates indexes
and stores data.

6. Include the write-behind element if you want to configure the cache store with write-behind
mode.

File-based cache store configuration

78

XML

<distributed-cache>
<persistence passivation="true">
<file-store shared="false">
<data path="data"/>
<index path="1index"/>

<write-behind modification-queue-size="2048"

</file-store>
</persistence>
</distributed-cache>

JSON

{
"distributed-cache": {
"persistence": {
"passivation": true,
"file-store" : {
"shared": false,

"data": {
"path": "data"
+
"index": {
"path": "index"
i

"write-behind": {

"modification-queue-size":
}
}
}
}
}
YAML
distributedCache:
persistence:
passivation: "true"
fileStore:
shared: "false"
data:
path: "data"
index:
path: "index"
writeBehind:

modificationQueueSize: "2048"

"2048"

79

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().passivation(true)
.addSoftIndexFileStore()
.shared(false)
.datalocation("data")
.indexLocation("index")
.modificationQueueSize(2048);

6.8.2. Configuring single file cache stores

If required, you can configure Infinispan to create single file stores.

o Single file stores are deprecated. You should use soft-index file stores for better
performance and data consistency in comparison with single file stores.

Prerequisites

* Enable global state and configure a global persistent location if you are configuring embedded
caches.

Procedure

1. Add the persistence element to your cache configuration.

2. Optionally specify true as the value for the passivation attribute to write to the file-based cache
store only when data is evicted from memory.

Include the single-file-store element.
Specify false as the value for the shared attribute.

Configure any other attributes as appropriate.

S

Include the write-behind element to configure the cache store as write behind instead of as
write through.

Single file cache store configuration

XML

<distributed-cache>
<persistence passivation="true">
<single-file-store shared="false"
preload="true"
fetch-state="true"/>
</persistence>
</distributed-cache>

80

JSON

{

"distributed-cache": {
"persistence" : {
"passivation" : true,
"single-file-store" : {
"shared" : false,
"preload" : true,
"fetch-state" : true
}
}
}
}

YAML

distributedCache:
persistence:
passivation: "true"
singleFileStore:
shared: "false"
preload: "true"
fetchState: "true"

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().passivation(true)
.addStore(SingleFileStoreConfigurationBuilder.class)
.shared(false)
.preload(true)
.fetchPersistentState(true);

6.9. JDBC connection factories

Infinispan provides different ConnectionFactory implementations that allow you to connect to
databases. You use JDBC connections with SQL cache stores and JDBC string-based caches stores.

Connection pools

Connection pools are suitable for standalone Infinispan deployments and are based on Agroal.

81

XML

<distributed-cache>
<persistence>
<connection-pool connection-url="jdbc:h2:mem:infinispan;DB_CLOSE_DELAY=-1"
username="sa"
password="changeme"
driver="org.h2.Driver"/>
</persistence>
</distributed-cache>

JSON

{

"distributed-cache": {
"persistence": {
"connection-pool”: {
"connection-url": "jdbc:h2:mem:infinispan_string_based"
"driver": "org.h2.Driver",

"username": "sa",
"password": "changeme"

YAML

distributedCache:
persistence:
connectionPool:
connectionUrl: "jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1"
driver: org.h2.Driver
username: Sa
password: changeme

ConfigurationBuilder

ConfigurationBuilder builder = new ConfiqurationBuilder();
builder.persistence()
.connectionPool()

.connectionUr1("jdbc:h2:mem:infinispan_string_based;DB_CLOSE_DELAY=-1")
.username("sa")

.driverClass("org.h2.Driver");

Managed datasources

Datasource connections are suitable for managed environments such as application servers.

82

XML

<distributed-cache>
<persistence>
<data-source jndi-url="java:/StringStoreWithManagedConnectionTest/DS" />
</persistence>
</distributed-cache>

JSON

{

"distributed-cache": {
"persistence": {
"data-source": {
"jndi-url": "java:/StringStoreWithManagedConnectionTest/DS"
}
}
}
}

YAML

distributedCache:
persistence:
dataSource:
jndiUrl: "java:/StringStoreWithManagedConnectionTest/DS"

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence()
.dataSource()
.jndiUr1("java:/StringStoreWithManagedConnectionTest/DS");

Simple connections

Simple connection factories create database connections on a per invocation basis and are intended
for use with test or development environments only.

83

XML

<distributed-cache>
<persistence>
<simple-connection connection-url="jdbc:h2://1localhost"
username="sa"
password="changeme"
driver="org.h2.Driver"/>
</persistence>
</distributed-cache>

JSON

{
"distributed-cache": {
"persistence": {
"simple-connection": {
"connection-url": "jdbc:h2://localhost",
"driver": "org.h2.Driver",

"username": "sa",
"password": "changeme"

YAML

distributedCache:
persistence:
simpleConnection:
connectionUrl: "jdbc:h2://localhost”
driver: org.h2.Driver
username: sa
password: changeme

ConfigurationBuilder

ConfigurationBuilder builder = new ConfiqurationBuilder();
builder.persistence()

.simpleConnection()
.connectionUr1("jdbc:h2://1localhost")
.driverClass("org.h2.Driver")

.username("admin")
.password("changeme");

Additional resources

* PooledConnectionFactoryConfigurationBuilder

84

* ManagedConnectionFactoryConfigurationBuilder

» SimpleConnectionFactoryConfigurationBuilder

6.9.1. Configuring managed datasources

Create managed datasources as part of your Infinispan Server configuration to optimize connection
pooling and performance for JDBC database connections. You can then specify the JDNI name of the
managed datasources in your caches, which centralizes J]DBC connection configuration for your
deployment.

Prerequisites

* Copy database drivers to the server/1lib directory in your Infinispan Server installation.

Use the install command with the Infinispan Command Line Interface (CLI) to
download the required drivers to the server/1ib directory, for example:

a3
w
install org.postgresql:postgresql:42.1.3
Procedure
1. Open your Infinispan Server configuration for editing.
2. Add a new data-source to the data-sources section.
3. Uniquely identify the datasource with the name attribute or field.
4. Specify a JNDI name for the datasource with the jndi-name attribute or field.
(r) You use the JNDI name to specify the datasource in your JDBC cache store
- configuration.
5. Set true as the value of the statistics attribute or field to enable statistics for the datasource
through the /metrics endpoint.
6. Provide JDBC driver details that define how to connect to the datasource in the connection-
factory section.
a. Specify the name of the database driver with the driver attribute or field.
b. Specify the JDBC connection url with the ur1l attribute or field.
c. Specify credentials with the username and password attributes or fields.
d. Provide any other configuration as appropriate.
7. Define how Infinispan Server nodes pool and reuse connections with connection pool tuning
properties in the connection-pool section.
8. Save the changes to your configuration.
Verification

Use the Infinispan Command Line Interface (CLI) to test the datasource connection, as follows:

85

1. Start a CLI session.

bin/cli.sh

2. List all datasources and confirm the one you created is available.

server datasource 1s

3. Test a datasource connection.

server datasource test my-datasource

Managed datasource configuration

XML

<server xmlns="urn:infinispan:server:13.0">
<data-sources>
<!-- Defines a unique name for the datasource and JNDI name that you
reference in JDBC cache store configuration.
Enables statistics for the datasource, if required. -->
<data-source name="ds"
jndi-name="jdbc/postgres”
statistics="true">
<!-- Specifies the JDBC driver that creates connections. -->
<connection-factory driver="org.postgresql.Driver"
url="jdbc:postgresql://localhost:5432/postgres”
username="postgres"
password="changeme">
<!-- Sets optional JDBC driver-specific connection properties. -->
<connection-property name="name">value</connection-property>
</connection-factory>
<!-- Defines connection pool tuning properties. -->
<connection-pool initial-size="1"
max-size="10"
min-size="3"
background-validation="1000"
idle-removal="1"
blocking-timeout="1000"
leak-detection="10000"/>
</data-source>
</data-sources>
</server>

86

JSON

{
"server": {
"data-sources": [{

"name": "ds",

"jndi-name": "jdbc/postgres",

"statistics": true,

"connection-factory": {
"driver": "org.postgresql.Driver",
"url": "jdbc:postgresql://localhost:5432/postgres”,
"username": "postgres",
"password": "changeme",
"connection-properties": {

"name": "value"

}

I

"connection-pool”: {
"initial-size": 1,
"max-size": 10,
"min-size": 3,
"background-validation": 1000,
"idle-removal": 1,
"blocking-timeout": 1000,
"leak-detection": 10000

}

}
}
}

87

YAML

server:
dataSources:
- name: ds

jndiName: 'jdbc/postgres’

statistics: true

connectionFactory:
driver: "org.postgresql.Driver"
url: "jdbc:postgresql://localhost:5432/postgres”
username: "postgres”
password: "changeme"
connectionProperties:

name: value

connectionPool:
initialSize: 1
maxSize: 10
minSize: 3
backgroundValidation: 1000
idleRemoval: 1
blockingTimeout: 1000
leakDetection: 10000

Configuring caches with JNDI names

When you add a managed datasource to Infinispan Server you can add the JNDI name to a JDBC-
based cache store configuration.

Prerequisites

* Configure Infinispan Server with a managed datasource.

Procedure

1. Open your cache configuration for editing.

2. Add the data-source element or field to the JDBC-based cache store configuration.

3. Specify the JNDI name of the managed datasource as the value of the jndi-url attribute.
4. Configure the JDBC-based cache stores as appropriate.

5. Save the changes to your configuration.

JNDI name in cache configuration

88

XML

<distributed-cache>
<persistence>
<jdbc:string-keyed-jdbc-store>
<!-- Specifies the INDI name of a managed datasource on Infinispan Server. -->
<jdbc:data-source jndi-url="jdbc/postgres"/>
<jdbc:string-keyed-table drop-on-exit="true" create-on-start="true" prefix="TBL

<jdbc:id-column name="ID" type="VARCHAR(255)"/>
<jdbc:data-column name="DATA" type="BYTEA"/>
<jdbc:timestamp-column name="TS" type="BIGINT"/>
<jdbc:segment-column name="S" type="INT"/>
</jdbc:string-keyed-table>
</jdbc:string-keyed-jdbc-store>
</persistence>
</distributed-cache>

89

JSON

{
"distributed-cache": {

"persistence": {
"string-keyed-jdbc-store": {
"data-source": {
"jndi-url": "jdbc/postgres”
b
"string-keyed-table": {
"prefix": "TBL",
"drop-on-exit": true,
"create-on-start": true,
"id-column": {
"name": "ID",
"type": "VARCHAR(255)"
s
"data-column": {
"name": "DATA",
"type": "BYTEA"
b
"timestamp-column": {
"name": "TS",
"type": "BIGINT"
s
"segment-column": {
"name": "S",
"type": "INT"

90

YAML

distributedCache:
persistence:
stringKeyedJdbcStore:
dataSource:
jndi-url: "jdbe/postgres”
stringKeyedTable:
prefix: "TBL"

dropOnExit: true
createOnStart: true

idColumn:
name: "ID"
type: "VARCHAR(255)"
dataColumn:
name: "DATA"
type: "BYTEA"
timestampColumn:
name: "TS"
type: "BIGINT"
segmentColumn:
name: "S"
type: "INT"

Connection pool tuning properties

You can tune JDBC connection pools for managed datasources in your Infinispan Server
configuration.

Property Description

initial-size Initial number of connections the pool should hold.
max-size Maximum number of connections in the pool.

min-size Minimum number of connections the pool should hold.

blocking-timeout Maximum time in milliseconds to block while waiting for a connection before
throwing an exception. This will never throw an exception if creating a new
connection takes an inordinately long period of time. Default is @ meaning
that a call will wait indefinitely.

background- Time in milliseconds between background validation runs. A duration of 0
validation means that this feature is disabled.

validate-on- Connections idle for longer than this time, specified in milliseconds, are
acquisition

validated before being acquired (foreground validation). A duration of @
means that this feature is disabled.

idle-removal Time in minutes a connection has to be idle before it can be removed.

leak-detection Time in milliseconds a connection has to be held before a leak warning.

91

6.9.2. Configuring JDBC connection pools with Agroal properties

You can use a properties file to configure pooled connection factories for JDBC string-based cache

stores.

Procedure

1. Specify JDBC connection pool configuration with org.infinispan.agroal.* properties, as in the
following example:

org.infinispan.

org.infinispan.
org.infinispan.
org.infinispan.
org.infinispan.
org.infinispan.
org.infinispan.
org.infinispan.

org.infinispan.
org.infinispan.
org.infinispan.
org.infinispan.

Y=-1

org.infinispan.
org.infinispan.
org.infinispan.

agroal.

agroal.
agroal.
agroal.
agroal.
agroal.
agroal.
agroal.

agroal.
agroal.
agroal.
agroal.

agroal.
agroal.
agroal.

metricsEnabled=false

minSize=10
maxSize=100
initialSize=20
acquisitionTimeout_s=1
validationTimeout_m=1
leakTimeout s=10
reapTimeout_m=10

metricsEnabled=false

autoCommit=true

jdbcTransactionIsolation=READ_COMMITTED
jdbcUr1=jdbc:h2:mem:PooledConnectionFactoryTest;DB_CLOSE_DELA

driverClassName=org.h2.Driver.class
principal=sa
credential=sa

2. Configure Infinispan to use your properties file with the properties-file attribute or the
PooledConnectionFactoryConfiguration.propertyFile() method.

XML

<connection-pool properties-file="path/to/agroal.properties"/>

JSON

"persistence":

"connection-pool”: {

{

“properties-file": "path/to/agroal.properties"”

}
}

YAML

persistence:

connectionPool:
propertiesFile: path/to/agroal.properties

92

ConfigurationBuilder

.connectionPool().propertyFile("path/to/agroal.properties")

Additional resources

» Agroal

6.10. SQL cache stores

SQL cache stores let you load Infinispan caches from existing database tables. Infinispan offers two
types of SQL cache store:

Table

Infinispan loads entries from a single database table.

Query
Infinispan uses SQL queries to load entries from single or multiple database tables, including
from sub-columns within those tables, and perform insert, update, and delete operations.

(r) Visit the code tutorials to try a SQL cache store in action. See the Persistence code
- tutorial with remote caches.

Both SQL table and query stores:

» Allow read and write operations to persistent storage.
* Can be read-only and act as a cache loader.
» Support keys and values that correspond to a single database column or a composite of multiple

database columns.

For composite keys and values, you must provide Infinispan with Protobuf schema (.proto files)
that describe the keys and values. With Infinispan Server you can add schema through the
Infinispan Console or Command Line Interface (CLI) with the schema command.

o SQL cache stores do not support expiration or segmentation.

Additional resources

» DatabaseType Enum lists supported database dialects

* Infinispan SQL store configuration reference

6.10.1. Data types for keys and values

Infinispan loads keys and values from columns in database tables via SQL cache stores,
automatically using the appropriate data types. The following CREATE statement adds a table named
"books" that has two columns, isbn and title:

93

Database table with two columns

CREATE TABLE books (
isbn NUMBER(13),
title varchar(120)
PRIMARY KEY(isbn)

);

When you use this table with a SQL cache store, Infinispan adds an entry to the cache using the
isbn column as the key and the title column as the value.

Additional resources

 Infinispan SQL store configuration reference

Composite keys and values

You can use SQL stores with database tables that contain composite primary keys or composite
values.

To use composite keys or values, you must provide Infinispan with Protobuf schema that describe
the data types. You must also add schema configuration to your SQL store and specify the message
names for keys and values.

Infinispan recommends generating Protobuf schema with the ProtoStream
@ processor. You can then upload your Protobuf schema for remote caches through
the Infinispan Console, CLI, or REST API.

Composite values

The following database table holds a composite value of the title and author columns:

CREATE TABLE books (
isbn NUMBER(13),
title varchar(120),
author varchar(80)
PRIMARY KEY(isbn)

)i

Infinispan adds an entry to the cache using the isbn column as the key. For the value, Infinispan
requires a Protobuf schema that maps the title column and the author columns:

package library;
message books_value {

optional string title = 1;
optional string author = 2;

94

Composite keys and values

The following database table holds a composite primary key and a composite value, with two

columns each:

CREATE TABLE books (
isbn NUMBER(13),
reprint INT,
title varchar(120),
author varchar(80)
PRIMARY KEY(isbn, reprint)

)

For both the key and the value, Infinispan requires a Protobuf schema that maps the columns to

keys and values:

package library;

message books_key {
required string isbn

:1,'
required int32 reprint =

2;
}

message books_value {
optional string title = 1;
optional string author = 2;

Additional resources
* Cache encoding and marshalling: Generate Protobuf schema and register them with Infinispan

 Infinispan SQL store configuration reference

Embedded keys

Protobuf schema can include keys within values, as in the following example:

95

Protobuf schema with an embedded key
package library;

message books_key {
required string isbn

:1;
required int32 reprint =

2;

message books_value {
required string isbn = 1;
required string reprint = 2;
optional string title = 3;
optional string author = 4;

To use embedded keys, you must include the embedded-key="true" attribute or embeddedKey(true)
method in your SQL store configuration.

SQL types to Protobuf types

The following table contains default mappings of SQL data types to Protobuf data types:

SQL type Protobuf
type
intd int32
int8 int64
float4 float
float8 double
numeric double
bool bool
char string
varchar string
text, tinytext, mediumtext, longtext string

bytea, tinyblob, blob, mediumblob, Tongblob bytes

Additional resources

* Cache encoding and marshalling

6.10.2. Loading Infinispan caches from database tables

Add a SQL table cache store to your configuration if you want Infinispan to load data from a
database table. When it connects to the database, Infinispan uses metadata from the table to detect
column names and data types. Infinispan also automatically determines which columns in the
database are part of the primary key.

96

Prerequisites

* Have JDBC connection details.
You can add JDBC connection factories directly to your cache configuration.
For remote caches in production environments, you should add managed datasources to
Infinispan Server configuration and specify the JNDI name in the cache configuration.

* Generate Protobuf schema for any composite keys or composite values and register your
schemas with Infinispan.

Infinispan recommends generating Protobuf schema with the ProtoStream
@ processor. For remote caches, you can register your schemas by adding them
through the Infinispan Console, CLIL, or REST API.

Procedure

1. Add database drivers to your Infinispan deployment.

- Remote caches: Copy database drivers to the server/1ib directory in your Infinispan Server
installation.

Use the install command with the Infinispan Command Line Interface
(CLD to download the required drivers to the server/1lib directory, for

@ example:

install org.postgresql:postgresql:42.1.3

- Embedded caches: Add the infinispan-cachestore-sql dependency to your pom file.

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cachestore-sql</artifactId>
</dependency>

2. Open your Infinispan configuration for editing.

3. Add a SQL table cache store.

Declarative

table-jdbc-store xmlns="urn:infinispan:config:store:sql:13.0"

Programmatic

persistence().addStore(TableJdbcStoreConfigurationBuilder.class)

nmn

4. Specify the database dialect with either dialect=
dialect="postgres".

or dialect(), for example dialect="H2" or

97

5. Configure the SQL cache store with the properties you require, for example:
> To use the same cache store across your cluster, set shared="true" or shared(true).
- To create a read only cache store, set read-only="true" or .ignoreModifications(true).

6. Name the database table that loads the cache with table-name="<database table_name>" or
table.name("<database_table_name>").

7. Add the schema element or the .schemaldbcConfigurationBuilder() method and add Protobuf
schema configuration for composite keys or values.

a. Specify the package name with the package attribute or package() method.
b. Specify composite values with the message-name attribute or messageName () method.
c. Specify composite keys with the key-message-name attribute or keyMessageName () method.

d. Set a value of true for the embedded-key attribute or embeddedKey() method if your schema
includes keys within values.

8. Save the changes to your configuration.

SQL table store configuration

The following example loads a distributed cache from a database table named "books" using
composite values defined in a Protobuf schema:

XML

<distributed-cache>
<persistence>
<table-jdbc-store xmlns="urn:infinispan:config:store:sql:13.0"
dialect="H2"
shared="true"
table-name="books">
<schema message-name="books_value"
package="1library"/>
</table-jdbc-store>
</persistence>
</distributed-cache>

98

JSON

{
"distributed-cache": {

"persistence": {
"table-jdbc-store": {

"dialect": "H2",

"shared": "true",

"table-name": "books",

"schema": {
"message-name": "books_value",
"package": "library"

YAML

distributedCache:
persistence:
tableldbcStore:

dialect: "H2"

shared: "true"

tableName: "books"

schema:
messageName: "books_value"
package: "library"

ConfigurationBuilder

ConfiqurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(TableldbcStoreConfigurationBuilder.class)
.dialect(DatabaseType.H2)
.shared("true")
.tableName("books")
.schemaldbcConfigurationBuilder()
.messageName ("books_value")
.packageName("1library");

Additional resources

* Cache encoding and marshalling: Generate Protobuf schema and register them with Infinispan
* Persistence code tutorial with remote caches

* JDBC connection factories

» DatabaseType Enum lists supported database dialects

 Infinispan SQL store configuration reference

99

6.10.3. Using SQL queries to load data and perform operations

SQL query cache stores let you load caches from multiple database tables, including from sub-
columns in database tables, and perform insert, update, and delete operations.

Prerequisites

* Have JDBC connection details.
You can add JDBC connection factories directly to your cache configuration.
For remote caches in production environments, you should add managed datasources to
Infinispan Server configuration and specify the JNDI name in the cache configuration.

* Generate Protobuf schema for any composite keys or composite values and register your
schemas with Infinispan.

Infinispan recommends generating Protobuf schema with the ProtoStream
(;) processor. For remote caches, you can register your schemas by adding them
through the Infinispan Console, CLIL, or REST API.

Procedure

1. Add database drivers to your Infinispan deployment.

- Remote caches: Copy database drivers to the server/1ib directory in your Infinispan Server
installation.

Use the install command with the Infinispan Command Line Interface
(CLI) to download the required drivers to the server/lib directory, for

@ example:

install org.postgresql:postgresql:42.1.3

o Embedded caches: Add the infinispan-cachestore-sql dependency to your pom file and make
sure database drivers are on your application classpath.

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cachestore-sql</artifactId>
</dependency>

2. Open your Infinispan configuration for editing.

3. Add a SQL query cache store.

Declarative

query-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0"

100

Programmatic

persistence().addStore(QueriesJdbcStoreConfigurationBuilder.class)

nmn

4. Specify the database dialect with either dialect=
dialect="postgres".

or dialect(), for example dialect="H2" or

5. Configure the SQL cache store with the properties you require, for example:
> To use the same cache store across your cluster, set shared="true" or shared(true).
- To create a read only cache store, set read-only="true" or .ignoreModifications(true).

6. Define SQL query statements that load caches with data and modify database tables with the
queries element or the queries() method.

Query Description
statement
SELECT Loads a single entry into caches. You can use wildcards but must specify

parameters for keys. You can use labelled expressions.

SELECT ALL Loads multiple entries into caches. You can use the * wildcard if the number of
columns returned match the key and value columns. You can use labelled
expressions.

SIZE Counts the number of entries in the cache.

DELETE Deletes a single entry from the cache.

DELETE ALL Deletes all entries from the cache.

UPSERT Modifies entries in the cache.

DELETE, DELETE ALL, and UPSERT statements do not apply to read only cache
stores but are required if cache stores allow modifications.

Parameters in DELETE statements must match parameters in SELECT statements
exactly.

Variables in UPSERT statements must have the same number of uniquely named

o variables that SELECT and SELECT ALL statements return. For example, if SELECT
returns foo and bar this statement must take only :foo and :bar as variables.
However you can apply the same named variable more than once in a
statement.

SQL queries can include JOIN, ON, and any other clauses that the database
supports.

7. Add the schema element or the .schemaldbcConfigurationBuilder() method and add Protobuf
schema configuration for composite keys or values.

a. Specify the package name with the package attribute or package() method.

b. Specify composite values with the message-name attribute or messageName () method.

101

c. Specify composite keys with the key-message-name attribute or keyMessageName () method.

d. Set a value of true for the embedded-key attribute or embeddedKey() method if your schema
includes keys within values.

8. Save the changes to your configuration.

Additional resources
* Cache encoding and marshalling: Generate Protobuf schema and register them with Infinispan
* Persistence code tutorial with remote caches
* JDBC connection factories
» DatabaseType Enum lists supported database dialects

 Infinispan SQL store configuration reference

SQL query store configuration

This section provides an example configuration for a SQL query cache store that loads a distributed
cache with data from two database tables: "person" and "address".

SQL statements
SQL data definition language (DDL) statements for the "person” and "address" tables are as follows:

SQL statement for the "person” table

CREATE TABLE Person (
name VARCHAR(255) NOT NULL,
picture VARBINARY(255),
sex VARCHAR(255),
birthdate TIMESTAMP,
accepted_tos BOOLEAN,
notused VARCHAR(255),
PRIMARY KEY (name)

)

SQL statement for the "address" table

CREATE TABLE Address (
name VARCHAR(255) NOT NULL,
street VARCHAR(255),
city VARCHAR(255),
zip INT,
PRIMARY KEY (name)
IE

Protobuf schemas

Protobuf schema for the "person" and "address" tables are as follows:

102

Protobuf schema for the "person” table
package com.example

enum Sex {
FEMALE = 1;
MALE = 2;

}

message Person {
optional string name = 1;
optional Address address = 2;
optional bytes picture = 3;
optional Sex sex = 4;
optional fixed64 birthDate
optional bool accepted_tos

5 [default
6 [default

0];
false];

Protobuf schema for the "address" table
package com.example

message Address {
optional string street = 1;
optional string city = 2 [default = "San Jose"];
optional int32 zip = 3 [default = 0];

}

Cache configuration

The following example loads a distributed cache from the "person" and "address" tables using a SQL
query that includes a JOIN clause:

103

XML

<distributed-cache>
<persistence>
<query-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0"
dialect="POSTGRES"
shared="true">
<queries key-columns="name">
<select-single>SELECT t1.name, t1.picture, t1.sex, t1.birthdate,
t1.accepted_tos, t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name
= t2.name WHERE t1.name = :name</select-single>
<select-all>SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos,
t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name =
t2.name</select-all>
<delete-single>DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM
Address t2 where t2.name = :name</delete-single>
<delete-all>DELETE FROM Person; DELETE FROM Address</delete-all>
<upsert>INSERT INTO Person (name, picture, sex, birthdate, accepted_tos)
VALUES (:name, :picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name,
street, city, zip) VALUES (:name, :street, :city, :zip)</upsert>
<size>SELECT COUNT(*) FROM Person</size>
</queries>
<schema message-name="Person"
package="com.example"
embedded-key="true"/>
</query-jdbc-store>
</persistence>
<distributed-cache>

104

JSON

{
"distributed-cache": {
"persistence": {
"query-jdbc-store": {
"dialect": "POSTGRES",
"shared": "true",
"key-columns": "name",
"queries": {

"select-single": "SELECT t1.name, t1.picture, t1.sex, t1.birthdate,
t1.accepted_tos, t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name
= t2.name WHERE t1.name = :name",

"select-all": "SELECT t1.name, t1.picture, t1.sex, t1.birthdate,
t1.accepted_tos, t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name
= t2.name",

"delete-single": "DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM
Address t2 where t2.name = :name",

"delete-all": "DELETE FROM Person; DELETE FROM Address",

"upsert": "INSERT INTO Person (name, picture, sex, birthdate, accepted_tos)
VALUES (:name, :picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name,
street, city, zip) VALUES (:name, :street, :city, :zip)",

"sjze": "SELECT COUNT(*) FROM Person"

}

chema": {

"message-name": "Person",
"package": "com.example",
"embedded-key": "true"

105

YAML

distributedCache:
persistence:
queryJdbcStore:
dialect: "POSTGRES"
shared: "true"
keyColumns: "name"
queries:
selectSingle: "SELECT t1.name, t1.picture, t1.sex, t1.birthdate,
t1.accepted_tos, t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name
= t2.name WHERE t1.name = :name"
selectAll: "SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos,
t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name"
deleteSingle: "DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM
Address t2 where t2.name = :name"
deleteAll: "DELETE FROM Person; DELETE FROM Address"
upsert: "INSERT INTO Person (name, picture, sex, birthdate, accepted_tos)
VALUES (:name, :picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name,
street, city, zip) VALUES (:name, :street, :city, :zip)"
size: "SELECT COUNT(*) FROM Person"
schema:
messageName: "Person"
package: "com.example"
embeddedKey: "true"

106

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(QueriesJdbcStoreConfigurationBuilder.class)
.dialect(DatabaseType.POSTGRES)
.shared("true")
.keyColumns("name")
.queriesJdbcConfigurationBuilder()

.select("SELECT t1.name, t1.picture, t1.sex, t1.birthdate, t1.accepted_tos,
t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name = t2.name WHERE
t1.name = :name")

.selectAT1("SELECT t1.name, t1.picture, t1.sex, t1.birthdate,
t1.accepted_tos, t2.street, t2.city, t2.zip FROM Person t1 JOIN Address t2 ON t1.name
= t2.name")

.delete("DELETE FROM Person t1 WHERE t1.name = :name; DELETE FROM Address t2
where t2.name = :name")

.deleteA11("DELETE FROM Person; DELETE FROM Address")

.upsert("INSERT INTO Person (name, picture, sex, birthdate, accepted_tos)
VALUES (:name, :picture, :sex, :birthdate, :accepted_tos); INSERT INTO Address(name,
street, city, zip) VALUES (:name, :street, :city, :zip)")

.size("SELECT COUNT(*) FROM Person")

.schemaldbcConfigurationBuilder()

.messageName("Person")

.packageName("com.example")

.embeddedKey(true);

Additional resources

 Infinispan SQL store configuration reference

6.10.4. SQL cache store troubleshooting

Find out about common issues and errors with SQL cache stores and how to troubleshoot them.
ISPN008064: No primary keys found for table <table_name>, check case sensitivity

Infinispan logs this message in the following cases:

e The database table does not exist.

* The database table name is case sensitive and needs to be either all lower case or all upper case,
depending on the database provider.

» The database table does not have any primary keys defined.
To resolve this issue you should:

1. Check your SQL cache store configuration and ensure that you specify the name of an existing
table.

2. Ensure that the database table name conforms to an case sensitivity requirements.

107

3. Ensure that your database tables have primary keys that uniquely identify the appropriate
rows.

6.11. JDBC string-based cache stores

JDBC String-Based cache stores, JdbcStringBasedStore, use JDBC drivers to load and store values in
the underlying database.

JDBC String-Based cache stores:

 Store each entry in its own row in the table to increase throughput for concurrent loads.

* Use a simple one-to-one mapping that maps each key to a String object using the key-to-string-
mapper interface.
Infinispan provides a default implementation, DefaultTwoWayKey2StringMapper, that handles
primitive types.

In addition to the data table used to store cache entries, the store also creates a META table for
storing metadata. This table is used to ensure that any existing database content is compatible with
the current Infinispan version and configuration.

By default Infinispan shares are not stored, which means that all nodes in the

o cluster write to the underlying store on each update. If you want operations to
write to the underlying database once only, you must configure JDBC store as
shared.
Segmentation

JdbcStringBasedStore uses segmentation by default and requires a column in the database table to
represent the segments to which entries belong.

Additional resources

» DatabaseType Enum lists supported database dialects

6.11.1. Configuring JDBC string-based cache stores
Configure Infinispan caches with JDBC string-based cache stores that can connect to databases.

Prerequisites
* Remote caches: Copy database drivers to the server/1lib directory in your Infinispan Server
installation.

* Embedded caches: Add the infinispan-cachestore-jdbc dependency to your pom file.

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-cachestore-jdbc</artifactId>
</dependency>

108

Procedure

1. Create a JDBC string-based cache store configuration in one of the following ways:

o Declaratively, add the persistence element or field then add string-keyed-jdbc-store with
the following schema namespace:

xmlns="urn:infinispan:config:store:jdbc:13.0"

o Programmatically, add the following methods to your ConfigurationBuilder:

persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

2. Specify the dialect of the database with either the dialect attribute or the dialect() method.

3. Configure any properties for the JDBC string-based cache store as appropriate.

For example, specify if the cache store is shared with multiple cache instances with either the
shared attribute or the shared() method.

4. Add a JDBC connection factory so that Infinispan can connect to the database.

5. Add a database table that stores cache entries.

JDBC string-based cache store configuration

XML

<distributed-cache>
<persistence>
<string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:13.0"
dialect="H2">
<connection-pool connection-url="jdbc:h2:mem:infinispan"
username="sa"
password="changeme"
driver="org.h2.Driver"/>
<string-keyed-table create-on-start="true"
prefix="ISPN_STRING_TABLE">
<id-column name="ID_COLUMN"
type="VARCHAR(255)" />
<data-column name="DATA_COLUMN"
type="BINARY" />
<timestamp-column name="TIMESTAMP_COLUMN"
type="BIGINT" />
<segment-column name="SEGMENT_COLUMN"
type="INT"/>
</string-keyed-table>
</string-keyed-jdbc-store>
</persistence>
</distributed-cache>

109

JSON

{
"distributed-cache": {
"persistence": {
"string-keyed-jdbc-store": {
"dialect": "H2",
"string-keyed-table": {
"prefix": "ISPN_STRING_TABLE",
"create-on-start": true,
"id-column": {
"name": "ID COLUMN",
"type": "VARCHAR(255)"
}
"data-column": {
"name": "DATA_COLUMN",
"type": "BINARY"
s
"timestamp-column": {
"name": "TIMESTAMP_COLUMN",
"type": "BIGINT"
s
"segment-column": {
"name": "SEGMENT_COLUMN",
"type": "INT"
}
b
"connection-pool”: {
"connection-url": "jdbc:h2:mem:infinispan”,
"driver": "org.h2.Driver",
"username": "sa",
"password": "changeme"
}
}
}
}
}

110

YAML

distributedCache:
persistence:
stringKeyedJdbcStore:
dialect: "H2"
stringKeyedTable:
prefix: "ISPN_STRING_TABLE"
createOnStart: true
idColumn:
name: "ID COLUMN"
type: "VARCHAR(255)"
dataColumn:
name: "DATA _COLUMN"
type: "BINARY"
timestampColumn:
name: "TIMESTAMP_COLUMN"
type: "BIGINT"
segmentColumn:
name: "SEGMENT_COLUMN"
type: "INT"
connectionPool:

connectionUrl: "jdbc:h2:mem:infinispan”

driver: "org.h2.Driver"
username: "sa"
password: "changeme"

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.persistence().addStore(JdbcStringBasedStoreConfigurationBuilder.class)

.dialect(DatabaseType.H2)

.table()
.dropOnExit(true)
.createOnStart(true)

.tableNamePrefix("ISPN_STRING_TABLE")

.idColumnName ("ID_COLUMN").idColumnType("VARCHAR(255)")
.dataColumnName("DATA_COLUMN").dataColumnType("BINARY")
.timestampColumnName ("TIMESTAMP_COLUMN").timestampColumnType("BIGINT")
.segmentColumnName ("SEGMENT _COLUMN").segmentColumnType("INT")

.connectionPool()

.connectionUr1("jdbc:h2:mem:infinispan")

.username("sa")
.password("changeme")

.driverClass("org.h2.Driver");

Additional resources

* JDBC connection factories

111

6.12. RocksDB cache stores

RocksDB provides key-value filesystem-based storage with high performance and reliability for
highly concurrent environments.

RocksDB cache stores, RocksDBStore, use two databases. One database provides a primary cache
store for data in memory; the other database holds entries that Infinispan expires from memory.

Table 1. Configuration parameters
Parameter Description

location Specifies the path to the RocksDB database that
provides the primary cache store. If you do not
set the location, it is automatically created. Note
that the path must be relative to the global
persistent location.

expiredlocation Specifies the path to the RocksDB database that
provides the cache store for expired data. If you
do not set the location, it is automatically
created. Note that the path must be relative to
the global persistent location.

expiryQueueSize Sets the size of the in-memory queue for
expiring entries. When the queue reaches the
size, Infinispan flushes the expired into the
RocksDB cache store.

clearThreshold Sets the maximum number of entries before
deleting and re-initializing (re-init) the RocksDB
database. For smaller size cache stores, iterating
through all entries and removing each one
individually can provide a faster method.

Tuning parameters

You can also specify the following RocksDB tuning parameters:

« compressionType
« blockSize

o cacheSize

Configuration properties

Optionally set properties in the configuration as follows:

* Prefix properties with database to adjust and tune RocksDB databases.

 Prefix properties with data to configure the column families in which RocksDB stores your data.

112

<property name="database.max_background_compactions">2</property>

<property name="data.write_buffer_size">64MB</property>

<property
name="data.compression_per_level">kNoCompression:kNoCompression:kNoCompression:kSnappy
Compression:kZSTD:kZSTD</property>

Segmentation

RocksDBStore supports segmentation and creates a separate column family per segment. Segmented
RocksDB cache stores improve lookup performance and iteration but slightly lower performance of
write operations.

You should not configure more than a few hundred segments. RocksDB is not
o designed to have an unlimited number of column families. Too many segments
also significantly increases cache store start time.

RocksDB cache store configuration

XML

<local-cache>
<persistence>
<rocksdb-store xmlns="urn:infinispan:config:store:rocksdb:13.0"
path="rocksdb/data">
<expiration path="rocksdb/expired"/>
</rocksdb-store>
</persistence>
</local-cache>

JSON

{
"local-cache": {
"persistence": {
"rocksdb-store": {
"path": "rocksdb/data",
"expiration": {
"path": "rocksdb/expired"

113

YAML

localCache:
persistence:
rocksdbStore:
path: "rocksdb/data"
expiration:
path: "rocksdb/expired"

ConfigurationBuilder

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.build();

EmbeddedCacheManager cacheManager = new DefaultCacheManager(cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

ConfigurationBuilder with properties

Properties props = new Properties();
props.put("database.max_background_compactions", "2");
props.put("data.write_buffer_size", "512MB");

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(RocksDBStoreConfigurationBuilder.class)
.location("rocksdb/data")
.expiredLocation("rocksdb/expired")
.properties(props)

.build();

Reference

* RocksDB cache store configuration schema
* RocksDBStore

* RocksDBStoreConfiguration

» rocksdb.org

* RocksDB Tuning Guide

* RocksDB Cache Store test

* RocksDB Cache Store test configuration

6.13. Remote cache stores

Remote cache stores, RemoteStore, use the Hot Rod protocol to store data on Infinispan clusters.

114

0 If you configure remote cache stores as shared you cannot preload data. In other
words if shared="true" in your configuration then you must set preload="false".

Segmentation

RemoteStore supports segmentation and can publish keys and entries by segment, which makes bulk

operations more efficient. However, segmentation is available only with Infinispan Hot Rod
protocol version 2.3 or later.

When you enable segmentation for RemoteStore, it uses the number of segments
that you define in your Infinispan server configuration.

A If the source cache is segmented and uses a different number of segments than
RemoteStore, then incorrect values are returned for bulk operations. In this case,
you should disable segmentation for RemoteStore.

Remote cache store configuration

XML

<distributed-cache>
<persistence>
<remote-store xmlns="urn:infinispan:config:store:remote:13.0"
cache="mycache"
raw-values="true">
<remote-server host="one"
port="12111" />
<remote-server host="two" />
<connection-pool max-active="10"
exhausted-action="CREATE_NEW" />
</remote-store>
</persistence>
</distributed-cache>

115

JSON

{
"distributed-cache": {
"remote-store": {

"cache": "mycache",

"raw-values": "true",

"remote-server": [

{

"host": "one",
"port": "12111"

"hostll: lltWO"

"connection-pool": {
"max-active": "10",
"exhausted-action": "CREATE_NEW"
}
}
}
}

YAML

distributedCache:
remoteStore:
cache: "mycache"
rawValues: "true"
remoteServer:
- host: "one"
port: "12111"
- host: "two"
connectionPool:
maxActive: "10"
exhaustedAction: "CREATE NEW"

116

ConfigurationBuilder

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence().addStore(RemoteStoreConfigurationBuilder.class)
.fetchPersistentState(false)
.ignoreModifications(false)
.purgeOnStartup(false)
.remoteCacheName("mycache")
.rawValues(true)
.addServer()
.host("one").port(12111)
.addServer()
Lhost("two")
.connectionPool()
.maxActive(10)
.exhaustedAction(ExhaustedAction.CREATE _NEW)
.async().enable();

Reference

* Remote cache store configuration schema
* RemoteStore

* RemoteStoreConfigurationBuilder

6.14. JPA cache stores

JPA (Java Persistence API) cache stores, JpaStore, use formal schema to persist data.

Other applications can then read from persistent storage to load data from Infinispan. However,
other applications should not use persistent storage concurrently with Infinispan.

When using JPA cache stores, you should take the following into consideration:

* Keys should be the ID of the entity. Values should be the entity object.

* Only a single @Id or @EmbeddedId annotation is allowed.

* Auto-generated IDs with the @GeneratedValue annotation are not supported.
* All entries are stored as immortal.

* JPA cache stores do not support segmentation.

o You should use JPA cache stores with embedded Infinispan caches only.

JPA cache store configuration

117

XML

<local-cache name="vehicleCache">
<persistence passivation="false">
<jpa-store xmlns="urn:infinispan:config:store:jpa:13.0"
persistence-unit="org.infinispan.persistence.jpa.configurationTest"
entity-class="org.infinispan.persistence.jpa.entity.Vehicle">
/>
</persistence>
</local-cache>

ConfigurationBuilder

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")

.entityClass(User.class)
.build();

Configuration parameters

Declarativ Programmat Description
e ic

persistence persistencelni Specifies the JPA persistence unit name in the JPA configuration file,

-unit tName persistence.xml, that contains the JPA entity class.
entity- entityClass Specifies the fully qualified JPA entity class name that is expected to
class be stored in this cache. Only one class is allowed.

Additional resources

* JPA cache store configuration schema

* JpaStore
* JpaStoreConfiguration
* JPA Cache Store test

* JPA Cache Store test configuration

6.14.1. JPA cache store example

This section provides an example for using JPA cache stores.

Prerequistes

* Configure Infinispan to marshall your JPA entities.

Procedure
1. Define a persistence unit "myPersistenceUnit" in persistence.xml.

118

<persistence-unit name="myPersistenceUnit">
<!-- Persistence configuration goes here. -->
</persistence-unit>

2. Create a user entity class.

@Entity
public class User implements Serializable {
eId
private String username;
private String firstName;
private String lastName;

3. Configure a cache named "usersCache" with a JPA cache store.

Then you can configure a cache "usersCache" to use JPA Cache Store, so that when you put data
into the cache, the data would be persisted into the database based on JPA configuration.

EmbeddedCacheManager cacheManager = ...;

Configuration cacheConfig = new ConfigurationBuilder().persistence()
.addStore(JpaStoreConfigurationBuilder.class)
.persistenceUnitName("org.infinispan.loaders.jpa.configurationTest")
.entityClass(User.class)

.build();
cacheManager.defineCache("usersCache"”, cacheConfig);

Cache<String, User> usersCache = cacheManager.getCache("usersCache");
usersCache.put("raytsang", new User(...));

o Caches that use a JPA cache store can store one type of data only, as in the following
example:

Cache<String, User> usersCache = cacheManager.getCache("myJPACache");

// Cache is configured for the User entity class

usersCache.put("username", new User());

// Cannot confiqgure caches to use another entity class with JPA cache stores
Cache<Integer, Teacher> teachersCache = cacheManager.getCache("myJPACache");
teachersCache.put(1, new Teacher());

// The put request does not work for the Teacher entity class

o The @EmbeddedId annotation allows you to use composite keys, as in the following example:

119

@Entity

public class Vehicle implements Serializable {
@EmbeddedId
private Vehicleld id;
private String color;

}

@Embeddable
public class Vehicleld implements Serializable

{
private String state;
private String licensePlate;

Additional resources

* Cache Encoding and Marshalling

6.15. Cluster cache loaders

(lusterCachelLoader retrieves data from other Infinispan cluster members but does not persist data.
In other words, ClusterCacheloader is not a cache store.

A ClusterLoader is deprecated and planned for removal in a future version.

(lusterCacheLoader provides a non-blocking partial alternative to state transfer. ClusterCachelLoader
fetches keys from other nodes on demand if those keys are not available on the local node, which is
similar to lazily loading cache content.

The following points also apply to ClusterCacheloader:

* Preloading does not take effect (preload=true).
» Fetching persistent state is not supported (fetch-state=true).

* Segmentation is not supported.

Cluster cache loader configuration

XML

<distributed-cache>
<persistence>
<cluster-loader preload="true" remote-timeout="500"/>
</persistence>
</distributed-cache>

120

JSON

{

"distributed-cache": {
"persistence" : {
"cluster-loader" : {
"preload" : true,
"remote-timeout" : "500"
}
}
}
+

YAML

distributedCache:
persistence:
clusterlLoader:
preload: "true"
remoteTimeout: "500"

ConfigurationBuilder

ConfigurationBuilder b = new ConfigurationBuilder();
b.persistence()

.addClusterLoader()

.remoteCallTimeout(500);

Additional resources

* Infinispan configuration schema
* ClusterLoader

* ClusterLoaderConfiguration

6.16. Creating custom cache store implementations

You can create custom cache stores through the Infinispan persistent SPI.

6.16.1. Infinispan Persistence SPI

The Infinispan Service Provider Interface (SPI) enables read and write operations to external
storage through the NonBlockingStore interface and has the following features:

Portability across JCache-compliant vendors

Infinispan maintains compatibility between the NonBlockingStore interface and the JSR-107
JCache specification by using an adapter that handles blocking code.

121

Simplified transaction integration

Infinispan automatically handles locking so your implementations do not need to coordinate
concurrent access to persistent stores. Depending on the locking mode you use, concurrent
writes to the same key generally do not occur. However, you should expect operations on the
persistent storage to originate from multiple threads and create implementations to tolerate this
behavior.

Parallel iteration

Infinispan lets you iterate over entries in persistent stores with multiple threads in parallel.

Reduced serialization resulting in less CPU usage

Infinispan exposes stored entries in a serialized format that can be transmitted remotely. For
this reason, Infinispan does not need to deserialize entries that it retrieves from persistent
storage and then serialize again when writing to the wire.

Additional resources

 Persistence SPI
* NonBlockingStore

« JSR-107

6.16.2. Creating cache stores
Create custom cache stores with implementations of the NonBlockingStore API.

Procedure

1. Implement the appropriate Infinispan persistent SPIs.
2. Annotate your store class with the @ConfiguredBy annotation if it has a custom configuration.
3. Create a custom cache store configuration and builder if desired.

a. Extend AbstractStoreConfiguration and AbstractStoreConfigurationBuilder.

b. Optionally add the following annotations to your store Configuration class to ensure that
your custom configuration builder parses your cache store configuration from XML:

. 0ConfigurationFor
= @BuiltBy

If you do not add these annotations, then CustomStoreConfigurationBuilder parses the
common store attributes defined in AbstractStoreConfiguration and any additional
elements are ignored.

0 If a configuration does not declare the @ConfigurationFor annotation, a
warning message is logged when Infinispan initializes the cache.

6.16.3. Examples of custom cache store configuration

The following are examples show how to configure Infinispan with custom cache store
implementations:

122

XML

<distributed-cache>
<persistence>
<store class="org.infinispan.persistence.example.MyInMemoryStore" />
</persistence>
</distributed-cache>

JSON

{
"distributed-cache": {

"persistence" : {
"store" : {
"class" : "org.infinispan.persistence.example.MyInMemoryStore"

YAML

distributedCache:
persistence:
store:
class: "org.infinispan.persistence.example.MyInMemoryStore"

ConfigurationBuilder

Configuration config = new ConfigurationBuilder()
.persistence()
.addStore(CustomStoreConfigurationBuilder.class)
.build();

6.16.4. Deploying custom cache stores

To use your cache store implementation with Infinispan Server, you must provide it with a JAR file.

Prerequisites

 Stop Infinispan Server if it is running.

Infinispan loads JAR files at startup only.

Procedure

1. Package your custom cache store implementation in a JAR file.

2. Add your JAR file to the server/1ib directory of your Infinispan Server installation.

123

6.17. Migrating data between cache stores

Infinispan provides a utility to migrate data from one cache store to another.

6.17.1. Cache store migrator

Infinispan provides the StoreMigrator.java utility that recreates data for the latest Infinispan cache
store implementations.

StoreMigrator takes a cache store from a previous version of Infinispan as source and uses a cache
store implementation as target.

When you run StoreMigrator, it creates the target cache with the cache store type that you define
using the EmbeddedCacheManager interface. StoreMigrator then loads entries from the source store
into memory and then puts them into the target cache.

StoreMigrator also lets you migrate data from one type of cache store to another. For example, you
can migrate from a JDBC string-based cache store to a RocksDB cache store.

StoreMigrator cannot migrate data from segmented cache stores to:

o * Non-segmented cache store.

» Segmented cache stores that have a different number of segments.

6.17.2. Getting the cache store migrator

StoreMigrator is available as part of the Infinispan tools library, infinispan-tools, and is included in
the Maven repository.

Procedure

* Configure your pom.xml for StoreMigrator as follows:

124

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.infinispan.example</groupId>
<artifactId>jdbc-migrator-example</artifactId>
<version>1.0-SNAPSHOT</version>

<dependencies>
<dependency>
<groupId>org.infinispan</groupld>
<artifactId>infinispan-tools</artifactId>
</dependency>
<!-- Additional dependencies -->
</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<goals>
<goal>java</goal>
</goals>
</execution>
</executions>
<configuration>
<mainClass>
org.infinispan.tools.store.migrator.StoreMigrator</mainClass>
<arguments>
<argument>path/to/migrator.properties</arqument>
</arguments>
</configuration>
</plugin>
</plugins>
</build>
</project>

6.17.3. Configuring the cache store migrator
Set properties for source and target cache stores in a migrator.properties file.

Procedure

125

1. Create amigrator.properties file.
2. Configure the source cache store in migrator.properties.

a. Prepend all configuration properties with source. as in the following example:

source.type=SOFT_INDEX_FILE_STORE
source.cache_name=myCache
source.location=/path/to/source/sifs
source.version=<version>

3. Configure the target cache store in migrator.properties.

a. Prepend all configuration properties with target. as in the following example:

target.type=SINGLE_FILE_STORE
target.cache_name=myCache
target.location=/path/to/target/sfs.dat

Configuration properties for the cache store migrator

Configure source and target cache stores in a StoreMigrator properties.

Table 2. Cache Store Type Property
Property Description Required/Optional

type Specifies the type of cache store Required
type for a source or target.

.type=JDBC_STRING
.type=JDBC_BINARY
.type=JDBC_MIXED
.type=LEVELDB
.type=ROCKSDB
.type=SINGLE_FILE_STORE

.type=SOFT_INDEX_FILE_STORE
.type=JDBC_MIXED

Table 3. Common Properties

126

Property

cache_name

segment_count

Table 4. [DBC Properties

Property
dialect

version

marshaller.class

marshaller.externalizers

Description Example Value

Names the cache that -cache_name=myCache

the store backs.

Required

Specifies the number of -segment_count=256
segments for target

cache stores that can

use segmentation.

Optional

The number of

segments must match
clustering.hash.numSeg

ments in the Infinispan
configuration.

In other words, the
number of segments
for a cache store must
match the number of
segments for the
corresponding cache. If
the number of
segments is not the
same, Infinispan
cannot read data from
the cache store.

Description Required/Optional

Specifies the dialect of the
underlying database.

Required

Specifies the marshaller version Required for source stores only.

for source cache stores.

Set the value that matches the
Infinispan major version of the
source cluster. For example; set
a value of 13 for Infinispan 13.x.

Specifies a custom marshaller
class.

Required if using custom
marshallers.

Specifies a comma-separated Optional
list of custom

AdvancedExternalizer

implementations to load in this

format: [id]:<Externalizer
class>

Required/Optional

Property Description Required/Optional

connection_pool.connection_url Specifies the JDBC connection Required

URL.

connection_pool.driver_class Specifies the class of the JDBC Required
driver.

connection_pool.username Specifies a database username. Required

connection_pool.password Specifies a password for the Required
database username.

db.major_version Sets the database major Optional
version.

db.minor_version Sets the database minor Optional
version.

db.disable_upsert Disables database upsert. Optional

db.disable_indexing Specifies if table indexes are ~ Optional
created.

table.string.table_name_prefix Specifies additional prefixes for Optional
the table name.

table.string.<id|data[timestam Specifies the column name. Required
p>.name
table.string.<id|data[timestam Specifies the column type. Required
p>. type
key_to_string_mapper Specifies the Optional

TwoWayKey2StringMapper class.
To migrate from Binary cache stores in older Infinispan versions, change
table.string.* to table.binary.* in the following properties:

o « source.table.binary.table_name_prefix
« source.table.binary.<id\|data\|timestamp>.name

o source.table.binary.<id\|data\|timestamp>.type

128

Example configuration for migrating to a JDBC String-Based cache store
target.type=STRING

target.cache_name=myCache

target.dialect=POSTGRES
target.marshaller.class=org.example.CustomMarshaller
target.marshaller.externalizers=25:Externalizer1,org.example.Externalizer2
target.connection_pool.connection_url=jdbc:postgresql:postgres
target.connection_pool.driver_class=org.postrgesql.Driver
target.connection_pool.username=postgres
target.connection_pool.password=redhat

target.db.major_version=9

target.db.minor_version=5

target.db.disable_upsert=false

target.db.disable_indexing=false
target.table.string.table_name_prefix=tablePrefix
target.table.string.id.name=id_column
target.table.string.data.name=datum_column
target.table.string.timestamp.name=timestamp_column
target.table.string.id.type=VARCHAR
target.table.string.data.type=bytea
target.table.string.timestamp.type=BIGINT
target.key_to_string_mapper=org.infinispan.persistence.keymappers.
DefaultTwoWayKey2StringMapper

Table 5. RocksDB Properties

Property Description Required/Optional
location Sets the database directory. Required
compression Specifies the compression type Optional

to use.

Example configuration for migrating from a RocksDB cache store.
source.type=ROCKSDB

source.cache_name=myCache
source.location=/path/to/rocksdb/database
source.compression=SNAPPY

Table 6. SingleFileStore Properties
Property Description Required/Optional

location Sets the directory that contains Required
the cache store .dat file.

129

Example configuration for migrating to a Single File cache store.
target.type=SINGLE_FILE_STORE

target.cache_name=myCache

target.location=/path/to/sfs.dat

Table 7. SoftIndexFileStore Properties

Property Description Value

Required/Optional location Sets the database directory.

Required index_location Sets the database index
directory.

Example configuration for migrating to a Soft-Index File cache store.
target.type=SOFT_INDEX_FILE_STORE

target.cache_name=myCache

target.location=path/to/sifs/database
target.location=path/to/sifs/index

6.17.4. Migrating Infinispan cache stores

Run StoreMigrator to migrate data from one cache store to another.

Prerequisites
* Get infinispan-tools.jar.

* Create amigrator.properties file that configures the source and target cache stores.

Procedure

 If you build infinispan-tools.jar from source, do the following:

1. Add infinispan-tools.jar and dependencies for your source and target databases, such as
JDBC drivers, to your classpath.

2. Specify migrator.properties file as an argument for StoreMigrator.

» If you pull infinispan-tools.jar from the Maven repository, run the following command:

mvn exec:java

130

Chapter 7. Configuring Infinispan to handle
network partitions

Infinispan clusters can split into network partitions in which subsets of nodes become isolated
from each other. This condition results in loss of availability or consistency for clustered caches.
Infinispan automatically detects crashed nodes and resolves conflicts to merge caches back
together.

7.1. Split clusters and network partitions

Network partitions are the result of error conditions in the running environment, such as when a
network router crashes. When a cluster splits into partitions, nodes create a JGroups cluster view
that includes only the nodes in that partition. This condition means that nodes in one partition can
operate independently of nodes in the other partition.

Detecting a split

To automatically detect network partitions, Infinispan uses the FD_ALL protocol in the default
JGroups stack to determine when nodes leave the cluster abruptly.

Infinispan cannot detect what causes nodes to leave abruptly. This can happen not
o only when there is a network failure but also for other reasons, such as when
Garbage Collection (GC) pauses the JVM.

Infinispan suspects that nodes have crashed after the following number of milliseconds:

FD_ALL.timeout + FD_ALL.interval + VERIFY_SUSPECT.timeout +
GMS.view_ack collection_timeout

When it detects that the cluster is split into network partitions, Infinispan uses a strategy for
handling cache operations. Depending on your application requirements Infinispan can:
» Allow read and/or write operations for availability

* Deny read and write operations for consistency

Merging partitions together

To fix a split cluster, Infinispan merges the partitions back together. During the merge, Infinispan
uses the .equals() method for values of cache entries to determine if any conflicts exist. To resolve
any conflicts between replicas it finds on partitions, Infinispan uses a merge policy that you can
configure.

7.1.1. Data consistency in a split cluster

Network outages or errors that cause Infinispan clusters to split into partitions can result in data
loss or consistency issues regardless of any handling strategy or merge policy.

131

Between the split and detection

If a write operation takes place on a node that is in a minor partition when a split occurs, and
before Infinispan detects the split, that value is lost when Infinispan transfers state to that minor
partition during the merge.

In the event that all partitions are in the DEGRADED mode that value is not lost because no state
transfer occurs but the entry can have an inconsistent value. For transactional caches write
operations that are in progress when the split occurs can be committed on some nodes and rolled
back on other nodes, which also results in inconsistent values.

During the split and the time that Infinispan detects it, it is possible to get stale reads from a cache
in a minor partition that has not yet entered DEGRADED mode.

During the merge

When Infinispan starts removing partitions nodes reconnect to the cluster with a series of merge
events. Before this merge process completes it is possible that write operations on transactional
caches succeed on some nodes but not others, which can potentially result in stale reads until the
entries are updated.

7.2. Cache availability and degraded mode

To preserve data consistency, Infinispan can put caches into DEGRADED mode if you configure them to
use either the DENY_READ_WRITES or ALLOW_READS partition handling strategy.

Infinispan puts caches in a partition into DEGRADED mode when the following conditions are true:

» Atleast one segment has lost all owners.
This happens when a number of nodes equal to or greater than the number of owners for a
distributed cache have left the cluster.

* There is not a majority of nodes in the partition.
A majority of nodes is any number greater than half the total number of nodes in the cluster
from the most recent stable topology, which was the last time a cluster rebalancing operation
completed successfully.

When caches are in DEGRADED mode, Infinispan:

» Allows read and write operations only if all replicas of an entry reside in the same partition.

* Denies read and write operations and throws an AvailabilityException if the partition does not
include all replicas of an entry.

o With the ALLOW_READS strategy, Infinispan allows read operations on caches in
DEGRADED mode.

DEGRADED mode guarantees consistency by ensuring that write operations do not take place for the
same key in different partitions. Additionally DEGRADED mode prevents stale read operations that
happen when a key is updated in one partition but read in another partition.

If all partitions are in DEGRADED mode then the cache becomes available again after merge only if the

132

cluster contains a majority of nodes from the most recent stable topology and there is at least one
replica of each entry. When the cluster has at least one replica of each entry, no keys are lost and
Infinispan can create new replicas based on the number of owners during cluster rebalancing.

In some cases a cache in one partition can remain available while entering DEGRADED mode in
another partition. When this happens the available partition continues cache operations as normal
and Infinispan attempts to rebalance data across those nodes. To merge the cache together
Infinispan always transfers state from the available partition to the partition in DEGRADED mode.

7.2.1. Degraded cache recovery example

This topic illustrates how Infinispan recovers from split clusters with caches that use the
DENY_READ_WRITES partition handling strategy.

As an example, a Infinispan cluster has four nodes and includes a distributed cache with two
replicas for each entry (owners=2). There are four entries in the cache, k1, k2, k3 and k4.

With the DENY_READ_WRITES strategy, if the cluster splits into partitions, Infinispan allows cache
operations only if all replicas of an entry are in the same partition.

In the following diagram, while the cache is split into partitions, Infinispan allows read and write
operations for k1 on partition 1 and k4 on partition 2. Because there is only one replica for k2 and k3
on either partition 1 or partition 2, Infinispan denies read and write operations for those entries.

Distributed cache

node1r @@ vz @O
Node 3 @@ Node 4 @@

|
v Splitting into %

network partitions

Partition 1 Partition 2

Node 1 @ K2 Node 3 @ K2
Node 2 @ K3 Node 4 @ K3

When network conditions allow the nodes to re-join the same cluster view, Infinispan merges the
partitions without state transfer and restores normal cache operations.

133

Merging partitions together

v

Distributed cache

Node 1 @@ Node 2 @@
Node 3 @@ Node 4 @@

7.2.2. Verifying cache availability during network partitions

Determine if caches on Infinispan clusters are in AVAILABLE mode or DEGRADED mode during a
network partition.

When Infinispan clusters split into partitions, nodes in those partitions can enter DEGRADED mode to
guarantee data consistency. In DEGRADED mode clusters do not allow cache operations resulting in
loss of availability.

Procedure

Verify availability of clustered caches in network partitions in one of the following ways:

* Check Infinispan logs for ISPN100011 messages that indicate if the cluster is available or if at
least one cache is in DEGRADED mode.

* Get the availability of remote caches through the Infinispan Console or with the REST API.

> Open the Infinispan Console in any browser, select the Data Container tab, and then locate
the availability status in the Health column.

o Retrieve cache health from the REST API.
GET /rest/v2/cache-managers/<cacheManagerName>/health

* Programmatically retrieve the availability of embedded caches with the getAvailability()
method in the AdvancedCache API.

Additional resources

* REST API: Getting cluster health
 org.infinispan.AdvancedCache.getAvailability

* Enum AvailabilityMode

7.2.3. Making caches available

Make caches available for read and write operations by forcing them out of DEGRADED mode.

134

Procedure

You should force clusters out of DEGRADED mode only if your deployment can
tolerate data loss and inconsistency.

Make caches available in one of the following ways:

* Change the availability of remote caches with the REST API.

POST /v2/caches/<cacheName>?action=set-availability&availability=AVAILABLE

* Programmatically change the availability of embedded caches with the AdvancedCache API.

AdvancedCache ac = cache.getAdvancedCache();
// Retrieve cache availability
boolean available = ac.getAvailability() == AvailabilityMode.AVAILABLE;
// Make the cache available
if (lavailable) {
ac.setAvailability(AvailabilityMode.AVAILABLE);

}

Additional resources

* REST API: Setting cache availability

* org.infinispan.AdvancedCache

7.3. Configuring partition handling

Configure Infinispan to use a partition handling strategy and merge policy so it can resolve split
clusters when network issues occur. By default Infinispan uses a strategy that provides availability
at the cost of lowering consistency guarantees for your data. When a cluster splits due to a network
partition clients can continue to perform read and write operations on caches.

If you require consistency over availability, you can configure Infinispan to deny read and write
operations while the cluster is split into partitions. Alternatively you can allow read operations and
deny write operations. You can also specify custom merge policy implementations that configure
Infinispan to resolve splits with custom logic tailored to your requirements.

Prerequisites

* Have a Infinispan cluster where you can create either a replicated or distributed cache.

Procedure

Partition handling configuration applies only to replicated and distributed
caches.

1. Open your Infinispan configuration for editing.

135

2. Add partition handling configuration to your cache with either the partition-handling element
or partitionHandling() method.

3. Specify a strategy for Infinispan to use when the cluster splits into partitions with the when-split
attribute or whenSplit() method.

The default partition handling strategy is ALLOW_READ_WRITES so caches remain availabile. If your
use case requires data consistency over cache availability, specify the DENY_READ_WRITES strategy.

4. Specify a policy that Infinispan uses to resolve conflicting entries when merging partitions with
the merge-policy attribute or mergePolicy() method.

By default Infinispan does not resolve conflicts on merge.

5. Save the changes to your Infinispan configuration.

Partition handling configuration

XML

<distributed-cache>
<partition-handling when-split="DENY_READ_WRITES"
merge-policy="PREFERRED_ALWAYS"/>
</distributed-cache>

JSON

{
"distributed-cache": {
"partition-handling" : {
"when-split": "DENY_READ_WRITES",
"merge-policy": "PREFERRED_ALWAYS"
}
¥
by

YAML

distributedCache:
partitionHandling:
whenSplit: DENY_READ_WRITES
mergePolicy: PREFERRED_ALWAYS

136

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.clustering().cacheMode(CacheMode.DIST_SYNC)
.partitionHandling()
.whenSplit(PartitionHandling.DENY_READ_WRITES)
.mergePolicy(MergePolicy.PREFERRED_NON_NULL);

7.4. Partition handling strategies

Partition handling strategies control if Infinispan allows read and write operations when a cluster
is split. The strategy you configure determines whether you get cache availability or data
consistency.

Table 8. Partition handling strategies

Strategy Description Availability or
consistency

ALLOW_READ_ Infinispan allows read and write operations on caches while a Availability
WRITES cluster is split into network partitions. Nodes in each partition

remain available and function independently of each other.

This is the default partition handling strategy.

DENY_READ_W Infinispan allows read and write operations only if all replicas Consistency

HES of an entry are in the partition. If a partition does not include
all replicas of an entry, Infinispan prevents cache operations
for that entry.
ALLOW_READS ' Infinispan allows read operations for entries and prevents Consistency with

write operations unless the partition includes all replicas of read availability
an entry.

7.5. Merge policies

Merge policies control how Infinispan resolves conflicts between replicas when bringing cluster
partitions together. You can use one of the merge policies that Infinispan provides or you can create
a custom implementation of the EntryMergePolicy API.

Table 9. Infinispan merge policies

Merge Description Considerations

policy

NONE Infinispan does not resolve conflicts when Nodes drop segments for which they are
merging split clusters. This is the default not the primary owner, which can result in
merge policy. data loss.

137

Merge Description Considerations
policy

PREFERRED Infinispan finds the value that exists on the Infinispan could use stale values to resolve
_ALWAYS majority of nodes in the cluster and uses it conflicts. Even if an entry is available the
to resolve conflicts. majority of nodes, the last update could
happen on the minority partition.

PREFERRED Infinispan uses the first non-null value that Infinispan could restore deleted entries.
NON_NULL ¢ finds on the cluster to resolve conflicts.

REMOVE_AL Infinispan removes any conflicting entries Results in loss of any entries that have
L from the cache. different values when merging split
clusters.

7.6. Configuring custom merge policies

Configure Infinispan to use custom implementations of the EntryMergePolicy API when handling
network partitions.

Prerequisites

* Implement the EntryMergePolicy APL

public class CustomMergePolicy implements EntryMergePolicy<String, String> {

public CacheEntry<String, String> merge(CacheEntry<String, String>
preferredEntry, List<CacheEntry<String, String>> otherEntries) {
// Decide which entry resolves the conflict

return the_solved_CacheEntry;

Procedure

1. Deploy your merge policy implementation to Infinispan Server if you use remote caches.

a. Package your classes as a JAR file that includes a META-
INF/services/org.infinispan.conflict.EntryMergePolicy file that contains the fully qualified
class name of your merge policy.

List implementations of EntryMergePolicy with the full qualified class name
org.example.CustomMergePolicy

b. Add the JAR file to the server/1ib directory.

(r) Use the install command with the Infinispan Command Line Interface
- (CLI) to download the JAR to the server/1ib directory.

138

2. Open your Infinispan configuration for editing.

3. Configure cache encoding with the encoding element or encoding() method as appropriate.

For remote caches, if you use only object metadata for comparison when merging entries then
you can use application/x-protostream as the media type. In this case Infinispan returns entries

to the EntryMergePolicy as byte[].

If you require the object itself when merging conflicts then you should configure caches with
the application/x-java-object media type. In this case you must deploy the relevant
ProtoStream marshallers to Infinispan Server so it can perform byte[] to object transformations

if clients use Protobuf encoding.

4. Specify your custom merge policy with the merge-policy attribute or mergePolicy() method as

part of the partition handling configuration.

5. Save your changes.

Custom merge policy configuration

XML

<distributed-cache name="mycache">
<partition-handling when-split="DENY_READ_WRITES"

merge-policy="org.example.CustomMergePolicy"/>

</distributed-cache>

JSON

{

"distributed-cache": {
"partition-handling" : {
"when-split": "DENY_READ_WRITES",
"merge-policy": "org.example.CustomMergePolicy'
}
}
}

YAML

distributedCache:
partitionHandling:
whenSplit: DENY_READ_WRITES
mergePolicy: org.example.CustomMergePolicy

139

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();

builder.clustering().cacheMode(CacheMode.DIST_SYNC)
.partitionHandling()
.whenSplit(PartitionHandling.DENY_READ_WRITES)
.mergePolicy(new CustomMergePolicy());

Additional resources

 org.infinispan.conflict. EntryMergePolicy

7.7. Manually merging partitions in embedded caches

Detect and resolve conflicting entries to manually merge embedded caches after network partitions
occur.

Procedure

* Retrieve the ConflictManager from the EmbeddedCacheManager to detect and resolve conflicting
entries in a cache, as in the following example:

EmbeddedCacheManager manager = new DefaultCacheManager("example-config.xml");
Cache<Integer, String> cache = manager.getCache("testCache");
ConflictManager<Integer, String> crm = ConflictManagerFactory.get(cache
.getAdvancedCache());

// Get all versions of a key
Map<Address, InternalCacheValue<String>> versions = crm.getAllVersions(1);

// Process conflicts stream and perform some operation on the cache
Stream<Map<Address, CacheEntry<Integer, String>>> conflicts = crm.getConflicts();
conflicts.forEach(map -> {

CacheEntry<Integer, String> entry = map.values().iterator().next();

Object conflictKey = entry.getKey();

cache.remove(conflictKey);

1

// Detect and then resolve conflicts using the confiqured EntryMergePolicy
crm.resolveConflicts();

// Detect and then resolve conflicts using the passed EntryMergePolicy instance
crm.resolveConflicts((preferredEntry, otherEntries) -> preferredEntry);

o Although the ConflictManager::getConflicts stream is processed per entry, the
underlying spliterator lazily loads cache entries on a per segment basis.

140

Chapter 8. Configuring user roles and
permissions

Authorization is a security feature that requires users to have certain permissions before they can
access caches or interact with Infinispan resources. You assign roles to users that provide different
levels of permissions, from read-only access to full, super user privileges.

8.1. Security authorization

Infinispan authorization secures your deployment by restricting user access.

User applications or clients must belong to a role that is assigned with sufficient permissions before
they can perform operations on Cache Managers or caches.

For example, you configure authorization on a specific cache instance so that invoking Cache.get()
requires an identity to be assigned a role with read permission while Cache.put() requires a role
with write permission.

In this scenario, if a user application or client with the io role attempts to write an entry, Infinispan
denies the request and throws a security exception. If a user application or client with the writer
role sends a write request, Infinispan validates authorization and issues a token for subsequent
operations.

Identities

Identities are security Principals of type java.security.Principal. Subjects, implemented with the
javax.security.auth.Subject class, represent a group of security Principals. In other words, a
Subject represents a user and all groups to which it belongs.

Identities to roles

Infinispan uses role mappers so that security principals correspond to roles, which you assign one
Or more permissions.

The following image illustrates how security principals correspond to roles:

Principal Permission

Principal Permission

Principal Permission

8.1.1. User roles and permissions

Infinispan includes a default set of roles that grant users with permissions to access data and
interact with Infinispan resources.

141

ClusterRoleMapper is the default mechanism that Infinispan uses to associate security principals to
authorization roles.

(lusterRoleMapper matches principal names to role names. A user named admin gets

o admin permissions automatically, a user named deployer gets deployer permissions,
and so on.
Role Permissions Description
admin ALL Superuser with all permissions

including control of the Cache
Manager lifecycle.

deployer ALL_READ, ALL_WRITE, Can create and delete
LISTEN, EXEC, MONITOR, Infinispan resources in addition
CREATE to application permissions.
application ALL_READ, ALL,_ WRITE, Has read and write access to
LISTEN, EXEC, MONITOR Infinispan resources in addition

to observer permissions. Can
also listen to events and execute
server tasks and scripts.

observer ALL_READ, MONITOR Has read access to Infinispan
resources in addition to monitor
permissions.

monitor MONITOR Can view statistics via JMX and

the metrics endpoint.

Reference

* org.infinispan.security.AuthorizationPermission Enumeration

* Infinispan configuration schema reference

8.1.2. Permissions

Authorization roles have different permissions with varying levels of access to Infinispan.
Permissions let you restrict user access to both Cache Managers and caches.

Cache Manager permissions

Permission Function Description

CONFIGURATION defineConfiguration Defines new cache
configurations.

LISTEN addListener Registers listeners against a

Cache Manager.

LIFECYCLE stop Stops the Cache Manager.

142

Permission

CREATE

MONITOR

ALL

Cache permissions

Permission
READ
WRITE

EXEC

LISTEN

BULK_READ

BULK_WRITE
LIFECYCLE
ADMIN

MONITOR

ALL
ALL_READ

Function

createCache, removeCache

getStats

Function
get, contains

put, putIfAbsent, replace, remove,
evict

distexec, streams

addListener

keySet, values, entrySet, query

clear, putAll
start, stop

getVersion, addInterceptor¥,
removelnterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager, evict,
getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContainer,
setAvailability,
getDataContainer, getStats,
getXAResource

getStats

Description

Create and remove container
resources such as caches,
counters, schemas, and scripts.

Allows access to JMX statistics
and the metrics endpoint.

Includes all Cache Manager
permissions.

Description
Retrieves entries from a cache.

Writes, replaces, removes,
evicts data in a cache.

Allows code execution against a
cache.

Registers listeners against a
cache.

Executes bulk retrieve
operations.

Executes bulk write operations.
Starts and stops a cache.

Allows access to underlying
components and internal
structures.

Allows access to JMX statistics
and the metrics endpoint.

Includes all cache permissions.

Combines the READ and
BULK_READ permissions.

143

Permission Function Description

ALL_WRITE - Combines the WRITE and
BULK_WRITE permissions.

Additional resources
* Infinispan Security API
8.1.3. Role mappers

Infinispan includes a PrincipalRoleMapper API that maps security Principals in a Subject to
authorization roles that you can assign to users.

Cluster role mappers

ClusterRoleMapper uses a persistent replicated cache to dynamically store principal-to-role
mappings for the default roles and permissions.

By default wuses the Principal name as the role name and implements
org.infinispan.security.MutableRoleMapper which exposes methods to change role mappings at
runtime.

* Java class: org.infinispan.security.mappers.ClusterRoleMapper

* Declarative configuration: <cluster-role-mapper />

Identity role mappers
IdentityRoleMapper uses the Principal name as the role name.
* Java class: org.infinispan.security.mappers.IdentityRoleMapper

* Declarative configuration: <identity-role-mapper />

CommonName role mappers

CommonNameRoleMapper uses the Common Name (CN) as the role name if the Principal name is a
Distinguished Name (DN).

For example this DN, cn=managers,ou=people,dc=example,dc=com, maps to the managers role.

* Java class: org.infinispan.security.mappers.CommonRoleMapper

* Declarative configuration: <common-name-role-mapper />

Custom role mappers

Custom role mappers are implementations of org.infinispan.security.PrincipalRoleMapper.
* Declarative configuration: <custom-role-mapper class="my.custom.RoleMapper" />

Additional resources

* Infinispan Security API

144

 org.infinispan.security.PrincipalRoleMapper

8.2. Access control list (ACL) cache

Infinispan caches roles that you grant to users internally for optimal performance. Whenever you
grant or deny roles to users, Infinispan flushes the ACL cache to ensure user permissions are
applied correctly.

If necessary, you can disable the ACL cache or configure it with the cache-size and cache-timeout
attributes.

XML

<infinispan>
<cache-container name="acl-cache-configuration">
<security cache-size="1000"
cache-timeout="300000">
<authorization/>
</security>
</cache-container>
</infinispan>

JSON
{
"infinispan" : {
"cache-container" : {
"name" : "acl-cache-configuration”,
"security" : {
"cache-size" : "1000",
"cache-timeout" : "300000",
"authorization" : {}
}
}
}
}
YAML
infinispan:
cacheContainer:
name: "acl-cache-configuration”
security:

cache-size: "1000"
cache-timeout: "300000"
authorization: ~

Additional resources

145

* Infinispan configuration schema reference

8.3. Customizing roles and permissions

You can customize authorization settings in your Infinispan configuration to use role mappers with
different combinations of roles and permissions.

Procedure

1. Declare a role mapper and a set of custom roles and permissions in the Cache Manager
configuration.

2. Configure authorization for caches to restrict access based on user roles.

Custom roles and permissions configuration

XML
<infinispan>
<cache-container name="custom-authorization">
<security>
<authorization>
<!-- Declare a role mapper that associates a security principal
to each role. -->
<identity-role-mapper />
<!-- Specify user roles and corresponding permissions. -->
<role name="admin" permissions="ALL" />
<role name="reader" permissions="READ" />
<role name="writer" permissions="WRITE" />
<role name="supervisor" permissions="READ WRITE EXEC"/>
</authorization>
</security>
</cache-container>
</infinispan>

146

JSON

{
"infinispan" : {
"cache-container" : {

"name" : "custom-authorization",

"security" : {
"authorization" : {

"identity-role-mapper" :

"roles" : {
"reader" : {
"role" : {

"permissions" :

}

}I

"admin" : {
"role" : {

"permissions" :

}
+
"writer" : {

"role" : {

"permissions" :

}

+

"supervisor" : {
"role" : {

"permissions" :

null,

"READ"

"ALL“

"WRITE"

"READ WRITE EXEC"

147

YAML

infinispan:
cacheContainer:
name: "custom-authorization"
security:
authorization:
identityRoleMapper: "null"
roles:
reader:
role:
permissions:
- "READ"
admin:
role:
permissions:
- "ALL"
writer:
role:
permissions:
- "WRITE"
supervisor:
role:
permissions:
- "READ"
- "WRITE"
- "EXEC"

8.4. Configuring caches with security authorization

Use authorization in your cache configuration to restrict user access. Before they can read or write
cache entries, or create and delete caches, users must have a role with a sufficient level of
permission.

Prerequisites

* Ensure the authorization element is included in the security section of the cache-container
configuration.

Infinispan enables security authorization in the Cache Manager by default and provides a
global set of roles and permissions for caches.

 If necessary, declare custom roles and permissions in the Cache Manager configuration.

Procedure

1. Open your cache configuration for editing.

2. Add the authorization element to caches to restrict user access based on their roles and
permissions.

3. Save the changes to your configuration.

148

Authorization configuration

The following configuration shows how to use implicit authorization configuration with default
roles and permissions:

XML

<distributed-cache>
<security>
<!-- Inherit authorization settings from the cache-container. --> <authorization/>
</security>
</distributed-cache>

JSON

{
"distributed-cache": {
"security": {
"authorization": {
"enabled": true

YAML

distributedCache:
security:
authorization:
enabled: true

Custom roles and permissions

XML

<distributed-cache>
<security>
<authorization roles="admin supervisor"/>
</security>
</distributed-cache>

149

JSON

{

"distributed-cache": {
"security": {

"authorization": {

"enabled": true,

"roles": ["admin","supervisor"]
}
}
}
+

YAML

distributedCache:
security:
authorization:
enabled: true

roles: ["admin","supervisor"]

8.5. Disabling security authorization

In local development environments you can disable authorization so that users do not need roles
and permissions. Disabling security authorization means that any user can access data and interact
with Infinispan resources.

Procedure

1. Open your Infinispan configuration for editing.
2. Remove any authorization elements from the security configuration for the Cache Manager.
3. Remove any authorization configuration from your caches.

4. Save the changes to your configuration.

8.6. Programmatically configuring authorization

When using embedded caches, you can configure authorization with the
GlobalSecurityConfigurationBuilder and ConfigurationBuilder classes.

Procedure

1. Construct a GlobalConfigurationBuilder that enables authorization, specifies a role mapper, and
defines a set of roles and permissions.

150

GlobalConfigurationBuilder global = new GlobalConfigurationBuilder();
global
.security()

.authorization().enable() @
.principalRoleMapper(new IdentityRoleMapper()) @
.role("admin") ®

.permission(AuthorizationPermission.ALL)
.role("reader")
.permission(AuthorizationPermission.READ)
.role("writer")
.permission(AuthorizationPermission.WRITE)
.role("supervisor")
.permission(AuthorizationPermission.READ)
.permission(AuthorizationPermission.WRITE)
.permission(AuthorizationPermission.EXEC);

@ Enables Infinispan authorization for the Cache Manager.
@ Specifies an implementation of PrincipalRoleMapper that maps Principals to roles.

® Defines roles and their associated permissions.

2. Enable authorization in the ConfigurationBuilder for caches to restrict access based on user
roles.

ConfigurationBuilder config = new ConfigurationBuilder();
config
.security()
.authorization()
.enable(); @

@ Implicitly adds all roles from the global configuration.

If you do not want to apply all roles to a cache, explicitly define the roles that are authorized for
caches as follows:

ConfigurationBuilder config = new ConfiqurationBuilder();
config
.security()
.authorization()
.enable()
.role("admin") @
.role("supervisor")
.role("reader");

@ Defines authorized roles for the cache. In this example, users who have the writer role only
are not authorized for the "secured" cache. Infinispan denies any access requests from those
users.

151

Additional resources

* org.infinispan.configuration.global.GlobalSecurityConfigurationBuilder

 org.infinispan.configuration.cache.ConfigurationBuilder

8.7. Code execution with security authorization

When you configure security authorization for embedded caches and then construct a
DefaultCacheManager, it returns a SecureCache that checks the security context before invoking any
operations. A SecureCache also ensures that applications cannot retrieve lower-level insecure
objects such as DataContainer. For this reason, you must execute code with an identity that has the
required authorization.

In Java, executing code with a specific identity usually means wrapping the code to be executed
within a PrivilegedAction as follows:
import org.infinispan.security.Security;

Security.doAs(subject, new PrivilegedExceptionAction<Void>() {
public Void run() throws Exception {
cache.put("key", "value");

}
H;

With Java 8, you can simplify the preceding call as follows:
Security.doAs(mySubject, PrivilegedAction<String>() -> cache.put("key", "value"));

The preceding call uses the Security.doAs() method instead of Subject.doAs(). You can use either
method with Infinispan, however Security.doAs() provides better performance.

If you need the current Subject, use the following call to retrieve it from the Infinispan context or
from the AccessControlContext:

Security.getSubject();

152

	Configuring Infinispan caches
	Table of Contents
	Chapter 1. Infinispan caches
	1.1. Cache API
	1.2. Cache managers
	1.3. Cache modes
	1.3.1. Comparison of cache modes

	1.4. Local caches
	1.4.1. Simple caches

	Chapter 2. Clustered caches
	2.1. Replicated caches
	2.2. Distributed caches
	2.2.1. Read consistency
	2.2.2. Key ownership
	2.2.3. Capacity factors
	2.2.4. Level one (L1) caches
	2.2.5. Server hinting
	2.2.6. Key affinity service
	2.2.7. Grouping API

	2.3. Invalidation caches
	2.4. Scattered caches
	2.5. Asynchronous replication
	2.5.1. Return values with asynchronous replication

	2.6. Configuring initial cluster size

	Chapter 3. Infinispan cache configuration
	3.1. Declarative cache configuration
	3.1.1. Cache configuration

	3.2. Adding cache templates
	3.2.1. Creating caches from templates
	3.2.2. Cache template inheritance
	3.2.3. Cache template wildcards
	3.2.4. Cache templates from multiple XML files

	3.3. Creating remote caches
	3.3.1. Default Cache Manager
	3.3.2. Creating caches with Infinispan Console
	3.3.3. Creating remote caches with the Infinispan CLI
	3.3.4. Creating remote caches from Hot Rod clients
	3.3.5. Creating remote caches with the REST API

	3.4. Creating embedded caches
	3.4.1. Adding Infinispan to your project
	3.4.2. Configuring embedded caches

	Chapter 4. Enabling and configuring Infinispan statistics and JMX monitoring
	4.1. Enabling statistics in embedded caches
	4.2. Enabling statistics in remote caches
	4.3. Enabling Hot Rod client statistics
	4.4. Configuring Infinispan metrics
	4.5. Registering JMX MBeans
	4.5.1. Enabling JMX remote ports
	4.5.2. Infinispan MBeans
	4.5.3. Registering MBeans in custom MBean servers

	Chapter 5. Configuring JVM memory usage
	5.1. Default memory configuration
	5.2. Eviction and expiration
	5.3. Eviction with Infinispan caches
	5.3.1. Eviction strategies
	5.3.2. Configuring maximum count eviction
	5.3.3. Configuring maximum size eviction
	5.3.4. Manual eviction
	5.3.5. Passivation with eviction

	5.4. Expiration with lifespan and maximum idle
	5.4.1. How expiration works
	5.4.2. Expiration reaper
	5.4.3. Maximum idle and clustered caches
	5.4.4. Configuring lifespan and maximum idle times for caches
	5.4.5. Configuring lifespan and maximum idle times per entry

	5.5. JVM heap and off-heap memory
	5.5.1. Off-heap data storage
	5.5.2. Configuring off-heap memory

	Chapter 6. Configuring persistent storage
	6.1. Passivation
	6.1.1. How passivation works

	6.2. Write-through cache stores
	6.3. Write-behind cache stores
	6.4. Segmented cache stores
	6.5. Shared cache stores
	6.6. Transactions with persistent cache stores
	6.7. Global persistent location
	6.7.1. Configuring the global persistent location

	6.8. File-based cache stores
	6.8.1. Configuring file-based cache stores
	6.8.2. Configuring single file cache stores

	6.9. JDBC connection factories
	6.9.1. Configuring managed datasources
	6.9.2. Configuring JDBC connection pools with Agroal properties

	6.10. SQL cache stores
	6.10.1. Data types for keys and values
	6.10.2. Loading Infinispan caches from database tables
	6.10.3. Using SQL queries to load data and perform operations
	6.10.4. SQL cache store troubleshooting

	6.11. JDBC string-based cache stores
	6.11.1. Configuring JDBC string-based cache stores

	6.12. RocksDB cache stores
	6.13. Remote cache stores
	6.14. JPA cache stores
	6.14.1. JPA cache store example

	6.15. Cluster cache loaders
	6.16. Creating custom cache store implementations
	6.16.1. Infinispan Persistence SPI
	6.16.2. Creating cache stores
	6.16.3. Examples of custom cache store configuration
	6.16.4. Deploying custom cache stores

	6.17. Migrating data between cache stores
	6.17.1. Cache store migrator
	6.17.2. Getting the cache store migrator
	6.17.3. Configuring the cache store migrator
	6.17.4. Migrating Infinispan cache stores

	Chapter 7. Configuring Infinispan to handle network partitions
	7.1. Split clusters and network partitions
	7.1.1. Data consistency in a split cluster

	7.2. Cache availability and degraded mode
	7.2.1. Degraded cache recovery example
	7.2.2. Verifying cache availability during network partitions
	7.2.3. Making caches available

	7.3. Configuring partition handling
	7.4. Partition handling strategies
	7.5. Merge policies
	7.6. Configuring custom merge policies
	7.7. Manually merging partitions in embedded caches

	Chapter 8. Configuring user roles and permissions
	8.1. Security authorization
	8.1.1. User roles and permissions
	8.1.2. Permissions
	8.1.3. Role mappers

	8.2. Access control list (ACL) cache
	8.3. Customizing roles and permissions
	8.4. Configuring caches with security authorization
	8.5. Disabling security authorization
	8.6. Programmatically configuring authorization
	8.7. Code execution with security authorization

