Infinispan cross-site replication

Table of Contents

1. Cross-site replication
1.1. Cross-site replication
1.2. Relay nodes
1.3. Infinispan cache backups
1.4. Backup strategies
1.5. Automatic offline parameters for backup locations
1.6. State transfer
1.7. Client connections across sites
1.7.1. Concurrent writes and conflicting entries
1.8. Expiration with cross-site replication
2. Configuring Infinispan cross-site replication
2.1. Configuring cluster transport for cross-site replication
2.1.1. Custom JGroups RELAY2 stacks
2.2. Adding backup locations to caches
2.3. Backing up to caches with different names
2.4. Configuring cross-site state transfer
2.5. Configuring conflict resolution algorithms
2.6. Cleaning tombstones for asynchronous backups
2.7. Verifying cross-site views
2.8. Configuring Hot Rod clients for cross-site replication
3. Performing cross-site operations with the CLI
3.1. Bringing backup locations offline and online
3.2. Configuring cross-site state transfer modes
3.3. Pushing state to backup locations
4. Performing cross-site operations with the REST API
4.1. Getting status of all backup locations
4.2. Getting status of specific backup locations
4.3. Taking backup locations offline
4.4. Bringing backup locations online
4.5. Pushing state to backup locations
4.6. Canceling state transfer
4.7. Getting state transfer status
4.8. Clearing state transfer status
4.9. Modifying take offline conditions
4.10. Canceling state transfer from receiving sites
4.11. Getting status of backup locations
4.12. Taking backup locations offline
4.13. Bringing backup locations online

© 00 = W W N DD DN

W W W W N DN DN DN DN DN DN DN DNDNDNDNDDNDDNDDDNDNDN R == = = =
= =, O O O © O © 0 00 0 0 N N9 o U1 U1 Ul o x W N O 00 N U bW w N e

4.14. Retrieving the state transfer mode
4.15. Setting the state transfer mode
4.16. Starting state transfer
4.17. Canceling state transfer
5. Performing cross-site operations via JMX
5.1. Registering JMX MBeans
5.2. Performing cross-site operations with JMX clients
5.3. JMX MBeans for cross-site replication
6. Cross-site replication log messages

6.1. Infinispan log messages for cross-site replication

32
32
32
32
33
33
34
34
36
36

Cross-site replication configures Infinispan to back up data across clusters. With
cross-site replication you create global clusters that span multiple geographic
locations to protect against disaster and ensure continuity of service.

Chapter 1. Cross-site replication

This section explains Infinispan cross-site replication capabilities, including details about relay
nodes, state transfer, and client connections for remote caches.

1.1. Cross-site replication

Infinispan can back up data between clusters running in geographically dispersed data centers and
across different cloud providers. Cross-site replication provides Infinispan with a global cluster
view and:

* Guarantees service continuity in the event of outages or disasters.

» Presents client applications with a single point of access to data in globally distributed caches.

Infinispan cluster Infinispan cluster
Node 1 Node 1 4+—> Node 3
JGroups
? ? RELAY2
l l T » I tl ¢ I
Node 2 P Node N Node 2 J—P Node N
Data center (LON) Data center (NYC)

Figure 1. Cross-site replication

1.2. Relay nodes

Relay nodes are the nodes in Infinispan clusters that are responsible for sending and receiving
requests from backup locations.

If a node is not a relay node, it must forward backup requests to a local relay node. Only relay
nodes can send requests to backup locations.

For optimal performance, you should configure all nodes as relay nodes. This increases the speed of
backup requests because each node in the cluster can backup to remote sites directly without
having to forward backup requests to local relay nodes.

Diagrams in this document illustrate Infinispan clusters with one relay node

0 because this is the default for the JGroups RELAY2 protocol. Likewise, a single
relay node is easier to illustrate because each relay node in a cluster
communicates with each relay node in the remote cluster.

JGroups configuration refers to relay nodes as "site master" nodes. Infinispan uses
relay node instead because it is more descriptive and presents a more intuitive
choice for our users.

1.3. Infinispan cache backups

Infinispan caches include a backups configuration that let you name remote sites as backup
locations.

For example, the following diagram shows three caches, "customers", "eu-orders", and "us-orders":

Customers
eu-orders us-orders us-orders

customers

eu-orders

customers customers
eu-orders us-orders

customers

us-orders

* In LON, "customers" names NYC as a backup location.
* In NYC, "customers" names LON as a backup location.

* "eu-orders" and "us-orders" do not have backups and are local to the respective cluster.

1.4. Backup strategies

Infinispan replicates data between clusters at the same time that writes to caches occur. For
example, if a client writes "k1" to LON, Infinispan backs up "k1" to NYC at the same time.

To back up data to a different cluster, Infinispan can use either a synchronous or asynchronous
strategy.

Synchronous strategy

When Infinispan replicates data to backup locations, it writes to the cache on the local cluster and
the cache on the remote cluster concurrently. With the synchronous strategy, Infinispan waits for
both write operations to complete before returning.

You can control how Infinispan handles writes to the cache on the local cluster if backup operations
fail. Infinispan can do the following:

* Ignore the failed backup and silently continue the write to the local cluster.

* Log a warning message or throw an exception and continue the write to the local cluster.

» Handle failed backup operations with custom logic.

Synchronous backups also support two-phase commits with caches that participate in optimistic
transactions. The first phase of the backup acquires a lock. The second phase commits the
modification.

o Two-phase commit with cross-site replication has a significant performance
impact because it requires two round-trips across the network.

Asynchronous strategy

When Infinispan replicates data to backup locations, it does not wait until the operation completes
before writing to the local cache.

Asynchronous backup operations and writes to the local cache are independent of each other. If
backup operations fail, write operations to the local cache continue and no exceptions occur. When
this happens Infinispan also retries the write operation until the remote cluster disconnects from
the cross-site view.

Synchronous vs asynchronous backups

Synchronous backups offer the strongest guarantee of data consistency across sites. If
strategy=sync, when cache.put() calls return you know the value is up to date in the local cache and
in the backup locations.

The trade-off for this consistency is performance. Synchronous backups have much greater latency
in comparison to asynchronous backups.

Asynchronous backups, on the other hand, do not add latency to client requests so they have no
performance impact. However, if strategy=async, when cache.put() calls return you cannot be sure
of that the value in the backup location is the same as in the local cache.

1.5. Automatic offline parameters for backup locations

Operations to replicate data across clusters are resource intensive, using excessive RAM and CPU.
To avoid wasting resources Infinispan can take backup locations offline when they stop accepting
requests after a specific period of time.

Infinispan takes remote sites offline based on the number of failed sequential requests and the time
interval since the first failure. Requests are failed when the target cluster does not have any nodes
in the cross-site view (JGroups bridge) or when a timeout expires before the target cluster
acknowledges the request.

Backup timeouts

Backup configurations include timeout values for operations to replicate data between clusters. If
operations do not complete before the timeout expires, Infinispan records them as failures.

In the following example, operations to replicate data to NYC are recorded as failures if they do not
complete after 10 seconds:

XML

<distributed-cache>
<backups>
<backup site="NYC"
strategy="ASYNC"
timeout="10000" />
</backups>
</distributed-cache>

JSON

{
"distributed-cache": {
"backups": {
"NYC" : {
"backup" : {
"strategy" : "ASYNC",
"timeout" : "10000"

YAML

distributedCache:
backups:
NYC:
backup:
strategy: "ASYNC"
timeout: "10000"

Number of failures

You can specify the number of consecutive failures that can occur before backup locations go
offline.

In the following example, if a cluster attempts to replicate data to NYC and five consecutive
operations fail, NYC automatically goes offline:

XML

<distributed-cache>
<backups>
<backup site="NYC"
strategy="ASYNC"
timeout="10000">
<take-offline after-failures="5"/>
</backup>
</backups>
</distributed-cache>

JSON

{
"distributed-cache": {
"backups": {
"NYC" : {
"backup" : {
"strategy" : "ASYNC",
"timeout" : "10000",
"take-offline" : {
"after-failures" : "5"

YAML

distributedCache:
backups:
NYC:
backup:
strategy: "ASYNC"
timeout: "10000"
takeOffline:
afterFailures: "5"

Time to wait

You can also specify how long to wait before taking sites offline when backup operations fail. If a
backup request succeeds before the wait time runs out, Infinispan does not take the site offline.

One or two minutes is generally a suitable time to wait before automatically taking backup
locations offline. If the wait period is too short then backup locations go offline too soon. You then
need to bring clusters back online and perform state transfer operations to ensure data is in sync

between the clusters.

A negative or zero value for the number of failures is equivalent to a value of 1. Infinispan uses
only a minimum time to wait to take backup locations offline after a failure occurs, for example:

<take-offline after-failures="-1"
min-wait="10000"/>

In the following example, if a cluster attempts to replicate data to NYC and there are more than five
consecutive failures and 15 seconds elapse after the first failed operation, NYC automatically goes
offline:

XML

<distributed-cache>
<backups>
<backup site="NYC"
strategy="ASYNC"
timeout="10000">
<take-offline after-failures="5" min-wait="15000"/>
</backup>
</backups>
</distributed-cache>

JSON
{
"distributed-cache": {
"backups”: {
"NYC" : {
"backup" : {

"strategy" : "ASYNC",

"timeout" : "10000",

"take-offline" : {
"after-failures" : "5",
"min-wait" : "15000"

YAML

distributedCache:
backups:
NYC:
backup:

strategy: "ASYNC"

timeout: "10000"

takeOffline:
afterFailures: "5"
minWait: "15000"

1.6. State transfer

State transfer is an administrative operation that synchronizes data between sites.

For example, LON goes offline and NYC starts handling client requests. When you bring LON back
online, the Infinispan cluster in LON does not have the same data as the cluster in NYC.

To ensure the data is consistent between LON and NYC, you can push state from NYC to LON.
« State transfer is bidirectional. For example, you can push state from NYC to LON or from LON
to NYC.
» Pushing state to offline sites brings them back online.
» State transfer overwrites only data that exists on both sites, the originating site and the

receiving site. Infinispan does not delete data.

For example, "k2" exists on LON and NYC. "k2" is removed from NYC while LON is offline.
When you bring LON back online, "k2" still exists at that location. If you push state from NYC to
LON, the transfer does not affect "k2" on LON.

To ensure contents of the cache are identical after state transfer, remove all data

@ from the cache on the receiving site before pushing state.
w
Use the clear() method or the clearcache command from the CLI.

« State transfer does not overwrite updates to data that occur after you initiate the push.

For example, "k1,v1" exists on LON and NYC. LON goes offline so you push state transfer to
LON from NYC, which brings LON back online. Before state transfer completes, a client puts
"k1,v2" on LON.

In this case the state transfer from NYC does not overwrite "k1,v2" because that modification

happened after you initiated the push.

Automatic state transfer

By default you must manually perform cross-site state transfer operations with the CLI or via JMX

or REST.

However, when using the asynchronous backup strategy, Infinispan can automatically perform
cross-site state transfer operations. When it detects that a backup location has come back online,
and the network connection is stable, Infinispan initiates bi-directional state transfer between
backup locations. For example, Infinispan simultaneously transfers state from LON to NYC and
NYC to LON.

To avoid temporary network disconnects triggering state transfer operations, there

6 are two conditions that backup locations must meet to go offline. The status of a
backup location must be offline and it must not be included in the cross-site view
with JGroups RELAY2.

Additional resources

 org.infinispan.Cache.clear()
* Using the Infinispan Command Line Interface

* Infinispan REST API

1.7. Client connections across sites

Clients can write to Infinispan clusters in either an Active/Passive or Active/Active configuration.

Active/Passive

The following diagram illustrates Active/Passive where Infinispan handles client requests from one
site only:

In the preceding image:

1. Client connects to the Infinispan cluster at LON.

2. Client writes "k1" to the cache.

3. The relay node at LON, "n1", sends the request to replicate "k1" to the relay node at NYC, "nA".

With Active/Passive, NYC provides data redundancy. If the Infinispan cluster at LON goes offline for
any reason, clients can start sending requests to NYC. When you bring LON back online you can
synchronize data with NYC and then switch clients back to LON.

Active/Active

The following diagram illustrates Active/Active where Infinispan handles client requests at two
sites:

In the preceding image:

Client A connects to the Infinispan cluster at LON.
Client A writes "k1" to the cache.
Client B connects to the Infinispan cluster at NYC.

Client B writes "k2" to the cache.

S A

Relay nodes at LON and NYC send requests so that "k1" is replicated to NYC and "k2" is
replicated to LON.

With Active/Active both NYC and LON replicate data to remote caches while handling client
requests. If either NYC or LON go offline, clients can start sending requests to the online site. You
can then bring offline sites back online, push state to synchronize data, and switch clients as
required.

Backup strategies and client connections

o An asynchronous backup strategy (strategy=async) is recommended with
Active/Active configurations.

If multiple clients attempt to write to the same entry concurrently, and the backup strategy is
synchronous (strategy=sync), then deadlocks occur. However you can use the synchronous backup

10

strategy with an Active/Passive configuration if both sites access different data sets, in which case
there is no risk of deadlocks from concurrent writes.

1.7.1. Concurrent writes and conflicting entries

Conflicting entries can occur with Active/Active site configurations if clients write to the same
entries at the same time but at different sites.

For example, client A writes to "k1" in LON at the same time that client B writes to "k1" in NYC. In
this case, "k1" has a different value in LON than in NYC. After replication occurs, there is no
guarantee which value for "k1" exists at which site.

To ensure data consistency, Infinispan uses a vector clock algorithm to detect conflicting entries
during backup operations, as in the following illustration:

LON NYC
k1=(n/a) 0,0 0,0
k1=2 1,0 --> 1,0 k1=2
k1=3 1,1 <-- 1,17 k1=3
k1=5 2,1 1,2 k1=8

--> 2,1 (conflict)
(conflict) 1,2 <--

Vector clocks are timestamp metadata that increment with each write to an entry. In the preceding
example, 0,0 represents the initial value for the vector clock on "k1".

A client puts "k1=2" in LON and the vector clock is 1,0, which Infinispan replicates to NYC. A client
then puts "k1=3" in NYC and the vector clock updates to 1,1, which Infinispan replicates to LON.

However if a client puts "k1=5" in LON at the same time that a client puts "k1=8" in NYC, Infinispan
detects a conflicting entry because the vector value for "k1" is not strictly greater or less between
LON and NYC.

When it finds conflicting entries, Infinispan uses the Java compareTo(String anotherString) method
to compare site names. To determine which key takes priority, Infinispan selects the site name that
is lexicographically less than the other. Keys from a site named AAA take priority over keys from a
site named AAB and so on.

Following the same example, to resolve the conflict for "k1", Infinispan uses the value for "k1" that
originates from LON. This results in "k1=5" in both LON and NYC after Infinispan resolves the
conflict and replicates the value.

(r) Prepend site names with numbers as a simple way to represent the order of
- priority for resolving conflicting entries; for example, 1LON and 2NYC.

11

Backup strategies

Infinispan performs conflict resolution with the asynchronous backup strategy (strategy=async)
only.

You should never use the synchronous backup strategy with an Active/Active configuration. In this
configuration concurrent writes result in deadlocks and you lose data. However you can use the
synchronous backup strategy with an Active/Active configuration if both sites access different data
sets, in which case there is no risk of deadlocks from concurrent writes.

Cross-site merge policies

Infinispan provides an XSiteEntryMergePolicy SPI in addition to cross-site merge policies that
configure Infinispan to do the following:

* Always remove conflicting entries.

* Apply write operations when write/remove conflicts occur.

*« Remove entries when write/remove conflicts occur.

Additional resources

* XSiteMergePolicy enum lists all merge polices that Infinispan provides
* XSiteEntryMergePolicy SPI

* java.lang.String#compareTo()

1.8. Expiration with cross-site replication

Expiration removes cache entries based on time. Infinispan provides two ways to configure
expiration for entries:

Lifespan

The lifespan attribute sets the maximum amount of time that entries can exist. When you set
lifespan with cross-site replication, Infinispan clusters expire entries independently of remote sites.

Maximum idle

The max-idle attribute specifies how long entries can exist based on read or write operations in a
given time period. When you set a max-idle with cross-site replication, Infinispan clusters send
touch commands to coordinate idle timeout values with remote sites.

Using maximum idle expiration in cross-site deployments can impact performance

o because the additional processing to keep max-idle values synchronized means
some operations take longer to complete.

12

Chapter 2. Configuring Infinispan cross-site
replication

Set up cluster transport so Infinispan clusters can discover each other and relay nodes can send
messages for cross-site replication. You can then add backup locations to Infinispan caches.

2.1. Configuring cluster transport for cross-site
replication

Add JGroups RELAY2 to your transport layer so that Infinispan can replicate caches to backup
locations.

Procedure

1. Open your Infinispan configuration for editing.
2. Add the RELAY2 protocol to a JGroups stack.

3. Specify the stack name with the stack attribute for the transport configuration so the Infinispan
cluster uses it.

4. Save and close your Infinispan configuration.

JGroups RELAY2 stacks

The following configuration shows a JGroups RELAY2 stack that:

» Uses the default JGroups UDP stack for inter-cluster transport, which refers to communication
between nodes at the local site.

Uses the default JGroups TCP stack for cross-site replication traffic.

Names the local site as LON.

» Specifies a maximum of 1000 nodes in the cluster that can send cross-site replication requests.

Specifies the names of all backup locations that participate in cross-site replication.

13

<infinispan>
<jgroups>
<stack name="xsite" extends="udp">
<relay.RELAY2 xmlns="urn:org:jgroups"”
site="LON"
max_site masters="1000"/>
<remote-sites default-stack="tcp">
<remote-site name="LON"/>
<remote-site name="NYC"/>
</remote-sites>
</stack>
</jgroups>
<cache-container>
<transport cluster="${cluster.name}" stack="xsite"/>
</cache-container>
</infinispan>

Additional resources

* JGroups RELAY2 Stacks

* Infinispan configuration schema reference

2.1.1. Custom JGroups RELAY2 stacks

You can add custom JGroups RELAY2 stacks to Infinispan clusters to use different transport
properties for cross-site replication. For example, the following configuration uses TCPPING instead
of MPING for discovery and extends the default TCP stack:

<infinispan>
<jgroups>
<stack name="relay-global" extends="tcp">
<TCPPING initial_hosts="192.0.2.0[7800]"
stack.combine="REPLACE"
stack.position="MPING"/>
</stack>
<stack name="xsite" extends="udp">
<relay.RELAY2 site="LON" xmlns="urn:org:jgroups"
max_site masters="10"
can_become_site master="true"/>
<remote-sites default-stack="relay-global">
<remote-site name="LON"/>
<remote-site name="NYC"/>
</remote-sites>
</stack>
</jgroups>
</infinispan>

Additional resources

14

* JGroups RELAY2

* Relaying between multiple sites (RELAY2)

2.2. Adding backup locations to caches

Specify the names of remote sites so Infinispan can replicate data to caches on those clusters.

Procedure

1. Open your Infinispan configuration for editing.
2. Add the backups element to your cache configuration.

3. Specify the name of the remote site as the backup location.
For example, in the LON configuration, specify NYC as the backup.

4. Repeat the preceding steps on each cluster so that each site is a backup for other sites.
For example, if you add LON as a backup for NYC you should also add NYC as a backup for
LON.

5. Save and close your Infinispan configuration.

Backup configuration
The following example shows the "customers" cache configuration for the LON cluster:

XML

<replicated-cache name="customers">
<backups>
<backup site="NYC"
strategy="ASYNC" />
</backups>
</replicated-cache>

JSON

{

"replicated-cache": {
"name": "customers",
"backups": {

"NYC": {
"backup" : {
"strategy" : "ASYNC"

15

YAML

replicatedCache:
name: "customers"
backups:
NYC:
backup:
strategy: "ASYNC"

The following example shows the "customers" cache configuration for the NYC cluster:

XML

<distributed-cache name="customers">
<backups>
<backup site="LON"
strategy="ASYNC" />
</backups>
</distributed-cache>

JSON

{

"distributed-cache": {
"name": "customers",
"backups": {

"LON": {
"backup": {
"strategy": "ASYNC"

YAML

distributedCache:
name: "customers"
backups:
LON:
backup:
strategy: "ASYNC"

Additional resources

* Infinispan configuration schema reference

16

2.3. Backing up to caches with different names

Infinispan replicates data between caches that have the same name by default. If you want
Infinispan to replicate between caches with different names, you can explicitly declare the backup
for each cache.

Procedure

1. Open your Infinispan configuration for editing.

2. Use backup-for or backupFor to replicate data from a remote site into a cache with a different
name on the local site.

3. Save and close your Infinispan configuration.

Backup for configuration

The following example configures the "eu-customers" cache to receive updates from the
"customers" cache on the LON cluster:

XML

<distributed-cache name="eu-customers">

<backups>

<backup site="LON"
strategy="ASYNC" />
</backups>
<backup-for remote-cache="customers"
remote-site="LON" />

</distributed-cache>

JSON

{
"distributed-cache": {
"name": "eu-customers",

"backups": {
"LON": {
"backup": {
"strategy": "ASYNC"
}
}
Iy
"backup-for" : {
"remote-cache" : "customers",
"remote-site" : "LON"

17

YAML

distributedCache:
name: "eu-customers"
backups:
LON:
backup:
strategy: "ASYNC"
backupFor:

remoteCache: "customers"
remoteSite: "LON"

2.4. Configuring cross-site state transfer

Change cross-site state transfer settings to optimize performance and specify whether operations
happen manually or automatically.

Procedure

1. Open your Infinispan configuration for editing.
2. Configure state transfer operations as appropriate.

a. Specify the number of entries to include in each state transfer operation with chunk-size or
chunkSize.

b. Specify the time to wait, in milliseconds, for state transfer operations to complete with
timeout.

c. Set the maximum number of attempts for Infinispan to retry failed state transfers with max-
retries or maxRetries.

d. Specify the time to wait, in milliseconds, between retry attempts with wait-time or waitTime.
e. Specify if state transfer operations happen automatically or manually with mode.

3. Open your Infinispan configuration for editing.

State transfer configuration

18

XML

<distributed-cache name="eu-customers">
<backups>
<backup site="LON"
strategy="ASYNC">
<state-transfer chunk-size="600"
timeout="2400000"
max-retries="30"
wait-time="2000"
mode="AUTO0"/>
</backup>
</backups>
</distributed-cache>

JSON

{

"distributed-cache": {
"name": "eu-customers",
"backups": {
"LON": {
"backup": {
"strategy": "ASYNC",
"state-transfer": {
"chunk-size": "600",
"timeout": "2400000",
"max-retries": "30",
"wait-time": "2000",
"mode": "AUTO"

19

YAML

distributedCache:
name: "eu-customers"
backups:
LON:
backup:
strategy: "ASYNC"
stateTransfer:
chunkSize: "600"
timeout: "2400000"
maxRetries: "30"
waitTime: "2000"
mode: "AUTO"

2.5. Configuring conflict resolution algorithms

Configure Infinispan to use a different algorithm to resolve conflicting entries between backup
locations.

Procedure

1. Open your Infinispan configuration for editing.

2. Specify one of the Infinispan algorithms or a custom implementation as the merge policy to
resolve conflicting entries.

3. Save and close your Infinispan configuration for editing.

Infinispan algorithms

G Find all Infinispan algorithms and their descriptions in the
- org.infinispan.xsite.spi.XSiteMergePolicy enum.

The following example configuration uses the ALWAYS_REMOVE algorithm that deletes conflicting
entries from both sites:

XML

<distributed-cache>
<backups merge-policy="ALWAYS_REMOVE">
<backup site="LON" strategy="ASYNC"/>
</backups>
</distributed-cache>

20

JSON

{
"distributed-cache": {

"backups": {
"merge-policy": "ALWAYS_REMOVE",
"LON": {
"backup": {
"strategy": "ASYNC"

YAML

distributedCache:
backups:
mergePolicy: "ALWAYS_REMOVE"
LON:
backup:
strategy: "ASYNC"

Custom conflict resolution algorithms

If you create a custom XSiteEntryMergePolicy implementation, you can specify the fully qualified
class name as the merge policy.

XML

<distributed-cache>
<backups merge-policy="org.mycompany.MyCustomXSiteEntryMergePolicy">
<backup site="LON" strategy="ASYNC"/>
</backups>
</distributed-cache>

21

JSON

{
"distributed-cache": {
"backups": {
"merge-policy": "org.mycompany.MyCustomXSiteEntryMergePolicy",
"LON": {
"backup": {
"strategy": "ASYNC"
}
}
}
}
}
YAML
distributedCache:
backups:
mergePolicy: "org.mycompany.MyCustomXSiteEntryMergePolicy"
LON:
backup:

strategy: "ASYNC"

Additional resources

* org.infinispan.xsite.spi.XSiteEntryMergePolicy
* org.infinispan.xsite.spi.XSiteMergePolicy
* org.infinispan.xsite.spi.SiteEntry

* Infinispan configuration schema reference

2.6. Cleaning tombstones for asynchronous backups

With the asynchronous backup strategy Infinispan stores metadata, known as tombstones, when it
removes keys. Infinispan periodically runs a task to remove these tombstones and reduce excessive
memory usage when backup locations no longer require the metadata. You can configure the
frequency for this task by defining a target size for tombstone maps as well as the maximum delay
between task runs.

Procedure

1. Open your Infinispan configuration for editing.

2. Specify the number of tombstones to store with the tombstone-map-size attribute.

If the number of tombstones increases beyond this number then Infinispan runs the cleanup
task more frequently. Likewise, if the number of tombstones is less than this number then
Infinispan does not run the cleanup task as frequently.

3. Add the max-cleanup-delay attribute and specify the maximum delay, in milliseconds, between

22

tombstone cleanup tasks.

4. Save the changes to your configuration.

Tombstone cleanup task configuration

XML

<distributed-cache>
<backups tombstone-map-size="512000" max-cleanup-delay="30000">
<backup site="LON" strategy="ASYNC"/>
</backups>
</distributed-cache>

JSON

{
"distributed-cache": {

"backups": {
"tombstone-map-size": 512000,
"max-cleanup-delay": 30000,
"LON": {

"backup": {
"strategy": "ASYNC"

YAML

distributedCache:
backups:
tombstoneMapSize: 512000
maxCleanupDelay: 30000
LON:
backup:
strategy: "ASYNC"

Additional resources

* Infinispan configuration schema reference

2.7. Verifying cross-site views

When you set up Infinispan to perform cross-site replication, you should check log files to ensure
that Infinispan clusters have successfully formed cross-site views.

Procedure

23

1. Open Infinispan log files with any appropriate editor.

2. Check for ISPN000439: Received new x-site view messages.

For example, if a Infinispan cluster in LON has formed a cross-site view with a Infinispan cluster in
NYC, logs include the following messages:

INFO [org.infinispan.XSITE] (jgroups-5,<server-hostname>) ISPN000439: Received new x-
site view: [NYC]

INFO [org.infinispan.XSITE] (jgroups-7,<server-hostname>) ISPN00@439: Received new x-
site view: [LON, NYC]

2.8. Configuring Hot Rod clients for cross-site
replication
Configure Hot Rod clients to use Infinispan clusters at different sites.

hotrod-client.properties

Servers at the active site

infinispan.client.hotrod.server_list = LON_host1:11222,LON_host2:11222,LON_host3:11222

Servers at the backup site
infinispan.client.hotrod.cluster.NYC
NYC_hostA:11222,NYC_hostB:11222,NYC_hostC:11222,NYC_hostD:11222

ConfigurationBuilder

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServers("LON_host1:11222;LON_host2:11222;LON_host3:11222")
.addCluster ("NYC")
.addClusterNodes(
"NYC_hostA:11222;NYC_hostB:11222;NYC_hostC:11222;NYC_hostD:11222")

Use the following methods to switch Hot Rod clients to the default cluster or to a

@ cluster at a different site:
- « RemoteCacheManager.switchToDefaultCluster()

« RemoteCacheManager.switchToCluster(${site.name})

Additional resources

* org.infinispan.client.hotrod.configuration package description
 org.infinispan.client.hotrod.configuration.ConfigurationBuilder

« org.infinispan.client.hotrod.RemoteCacheManager

24

Chapter 3. Performing cross-site operations
with the CLI

Use the Infinispan command line interface (CLI) to connect to Infinispan Server clusters, manage
sites, and push state transfer to backup locations.

3.1. Bringing backup locations offline and online
Take backup locations offline manually and bring them back online.

Prerequisites

* Create a CLI connection to Infinispan.

Procedure

1. Check if backup locations are online or offline with the site status command:

site status --cache=cacheName --site=NYC

o --site is an optional argument. If not set, the CLI returns all backup locations.
O Use the --all-caches option to get the backup location status for all caches.
w

2. Manage backup locations as follows:

o Bring backup locations online with the bring-online command:
site bring-online --cache=customers --site=NYC
o Take backup locations offline with the take-offline command:

site take-offline --cache=customers --site=NYC
G Use the --all-caches option to bring a backup location online, or take a backup
™ location offline, for all caches.

For more information and examples, run the help site command.

3.2. Configuring cross-site state transfer modes

You can configure cross-site state transfer operations to happen automatically when Infinispan
detects that backup locations come online. Alternatively you can use the default mode, which is to
manually perform state transfer.

25

Prerequisites

* Create a CLI connection to Infinispan.

Procedure

1. Use the site command to configure state transfer modes, as in the following examples:

o Retrieve the current state transfer mode.
site state-transfer-mode get --cache=cacheName --site=NYC
o Configure automatic state transfer operations for a cache and backup location.

site state-transfer-mode set --cache=cacheName --site=NYC --mode=AUTO

O Run the help site command for more information and examples.
w

3.3. Pushing state to backup locations

Transfer cache state to backup locations.

Prerequisites

* Create a CLI connection to Infinispan.

Procedure

» Use the site push-site-state command to push state transfer, as in the following example:

site push-site-state --cache=cacheName --site=NYC

(;) Use the --all-caches option to push state transfer for all caches.

For more information and examples, run the help site command.

26

Chapter 4. Performing cross-site operations
with the REST API

Infinispan Server provides a REST endpoint that exposes methods for performing cross-site
operations.

4.1. Getting status of all backup locations

Retrieve the status of all backup locations with GET requests.
GET /v2/caches/{cacheName}/x-site/backups/

Infinispan responds with the status of each backup location in JSON format, as in the following
example:

{
"NYC": {
"status": "online'

1

I
"LON": {
"status": "mixed",
"online": [
"NodeA"

1.
"offline": [
"NodeB"
]
}
}

Table 1. Returned Status
Value Description

online All nodes in the local cluster have a cross-site
view with the backup location.

offline No nodes in the local cluster have a cross-site
view with the backup location.

mixed Some nodes in the local cluster have a cross-site
view with the backup location, other nodes in
the local cluster do not have a cross-site view.
The response indicates status for each node.

27

4.2. Getting status of specific backup locations

Retrieve the status of a backup location with GET requests.

GET /v2/caches/{cacheName}/x-site/backups/{siteName}

Infinispan responds with the status of each node in the site in JSON format, as in the following
example:

{
"NodeA":"offline",

"NodeB":"online"

}

Table 2. Returned Status

Value Description

online The node is online.

offline The node is offline.

failed Not possible to retrieve status. The remote cache

could be shutting down or a network error
occurred during the request.

4.3. Taking backup locations offline

Take backup locations offline with POST requests and the ?action=take-offline parameter.
POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=take-offline
4.4. Bringing backup locations online
Bring backup locations online with the 7action=bring-online parameter.
POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=bring-online
4.5. Pushing state to backup locations
Push cache state to a backup location with the 7action=start-push-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=start-push-state

28

4.6. Canceling state transfer

Cancel state transfer operations with the 7action=cancel-push-state parameter.
POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-push-state
4.7. Getting state transfer status
Retrieve status of state transfer operations with the ?action=push-state-status parameter.
GET /v2/caches/{cacheName}/x-site/backups?action=push-state-status

Infinispan responds with the status of state transfer for each backup location in JSON format, as in
the following example:

“NYC":"CANCELED",
|ILONII : IIOK"

Table 3. Returned status

Value Description

SENDING State transfer to the backup location is in
progress.

OK State transfer completed successfully.

ERROR An error occurred with state transfer. Check log
files.

CANCELLING State transfer cancellation is in progress.

4.8. Clearing state transfer status

Clear state transfer status for sending sites with the 7action=clear-push-state-status parameter.

POST /v2/caches/{cacheName}/x-site/local?action=clear-push-state-status

4.9. Modifying take offline conditions

Sites go offline if certain conditions are met. Modify the take offline parameters to control when
backup locations automatically go offline.

Procedure

29

1. Check configured take offline parameters with GET requests and the take-offline-config
parameter.

GET /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

The Infinispan response includes after_failures and min_wait fields as follows:

{

"after _failures": 2,
"min_wait": 1000

}
2. Modify take offline parameters in the body of PUT requests.
PUT /v2/caches/{cacheName}/x-site/backups/{siteName}/take-offline-config

If the operation successfully completes, the service returns 204 (No Content).

4.10. Canceling state transfer from receiving sites

If the connection between two backup locations breaks, you can cancel state transfer on the site
that is receiving the push.

Cancel state transfer from a remote site and keep the current state of the local cache with the
7action=cancel-receive-state parameter.

POST /v2/caches/{cacheName}/x-site/backups/{siteName}?action=cancel-receive-state
4.11. Getting status of backup locations
Retrieve the status of all backup locations from Cache Managers with GET requests.

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/

Infinispan responds with status in JSON format, as in the following example:

30

"SF0-3":{
"status":"online"

}

"NYC-2":{
"status":"mixed",
"online":[

"CACHE 1"
1,
"offline":[
"CACHE_2"
1.
"mixed": [
"CACHE_3"
]
}

Table 4. Returned status

Value

online

offline

mixed

Description

All nodes in the local cluster have a cross-site
view with the backup location.

No nodes in the local cluster have a cross-site
view with the backup location.

Some nodes in the local cluster have a cross-site
view with the backup location, other nodes in
the local cluster do not have a cross-site view.
The response indicates status for each node.

GET /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{site}

Returns the status for a single backup location.

4.12. Taking backup locations offline

Take backup locations offline with the 7action=take-offline parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-site/backups/{siteName}?action=take-

offline

4.13. Bringing backup locations online

Bring backup locations online with the 7action=bring-online parameter.

31

POST /rest/v2/cache-managers/{cacheManagerName}/x-
site/backups/{siteName}?action=bring-online

4.14. Retrieving the state transfer mode
Check the state transfer mode with GET requests.
GET /rest/v2/caches/{cacheName}/x-site/backups/{site}/state-transfer-mode
4.15. Setting the state transfer mode
Configure the state transfer mode with the ?action=set parameter.

POST /rest/v2/caches/{cacheName}/x-site/backups/{site}/state-transfer-
mode?action=set&mode={mode}

4.16. Starting state transfer
Push state of all caches to remote sites with the ?action=start-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-
site/backups/{siteName}?action=start-push-state

4.17. Canceling state transfer

Cancel ongoing state transfer operations with the ?action=cancel-push-state parameter.

POST /rest/v2/cache-managers/{cacheManagerName}/x-
site/backups/{siteName}?action=cancel-push-state

32

Chapter 5. Performing cross-site operations
via JMX

Perform cross-site operations such as pushing state transfer and bringing sites online via JMX.

5.1. Registering JMX MBeans

Infinispan can register JMX MBeans that you can use to collect statistics and perform
administrative operations. You must also enable statistics otherwise Infinispan provides 0 values
for all statistic attributes in JMX MBeans.

Procedure
1. Open your Infinispan configuration for editing.

2. Add the jmx element or object to the cache container and specify true as the value for the
enabled attribute or field.

3. Add the domain attribute or field and specify the domain where JMX MBeans are exposed, if
required.

4. Save and close your client configuration.

JMX configuration

XML

<infinispan>
<cache-container statistics="true">
<jmx enabled="true"
domain="example.com"/>
</cache-container>
</infinispan>

JSON

{
"infinispan" : {
"cache-container" : {

"statistics" : "true",
gmx" o {
"enabled" : "true",
"domain" : "example.com"
}
}
}

33

YAML

infinispan:
cacheContainer:
statistics: "true"
jmx:
enabled: "true"
domain: "example.com"

5.2. Performing cross-site operations with JMX clients

Perform cross-site operations with JMX clients.

Prerequisites

* Configure Infinispan to register JMX MBeans

Procedure

1. Connect to Infinispan with any JMX client.
2. Invoke operations from the following MBeans:
o XSiteAdmin provides cross-site operations for caches.

o GlobalXSiteAdminOperations provides cross-site operations for Cache Managers.

For example, to bring sites back online, invoke bringSiteOnline(siteName).

Additional resources

¢ XSiteAdmin MBean

* GlobalXSiteAdminOperations MBean

5.3. JMX MBeans for cross-site replication

Infinispan provides JMX MBeans for cross-site replication that let you gather statistics and perform
remote operations.

The org.infinispan:type=Cache component provides the following JMX MBeans:

» XSiteAdmin exposes cross-site operations that apply to specific cache instances.
* RpcManager provides statistics about network requests for cross-site replication.

* AsyncXSiteStatistics provides statistics for asynchronous cross-site replication, including queue
size and number of conflicts.

The org.infinispan:type=CacheManager component includes the following JMX MBean:

* GlobalXSiteAdminOperations exposes cross-site operations that apply to all caches in a cache
container.

For details about JMX MBeans along with descriptions of available operations and statistics, see the

34

Infinispan JMX Components documentation.

Additional resources

* Infinispan JMX Components

35

Chapter 6. Cross-site replication log
messages

Infinispan includes an org.infinispan.XSITE log category to help you troubleshoot cross-site
replication operations.

6.1. Infinispan log messages for cross-site replication

Find user actions for log messages related to cross-site replication.

Log level

DEBUG

INFO

INFO

INFO

WARN

WARN

36

Identifier

ISPN000400

ISPN000439

ISPN100005

ISPN100006

ISPN000202

ISPN000289

Message

Node <site-name> was
suspected

Received new x-site view: <site-
name>

Site <site-name> is online.

Site <site-name> is offline.

Problems backing up data for
cache <cache-name> to site
<site-name>:

Unable to send X-Site state
chunk to <site-name>.

Description

Infinispan prints this message
when it cannot reach backup
locations. Ensure that sites are
online and check network
status.

Infinispan prints this message
when sites join and leave the
global cluster.

Infinispan prints this message
when a site comes online.

Infinispan prints this message
when a site goes offline. If you
did not take the site offline
manually, this message could
indicate a failure has occurred.
Check network status and try to
bring the site back online.

Infinispan prints this message
when issues occur with state
transfer operations along with
the exception. If necessary
adjust Infinispan logging to get
more fine-grained logging
messages.

Indicates that Infinispan cannot
transfer a batch of cache entries
during a state transfer
operation. Ensure that sites are
online and check network
status.

Log level
WARN

WARN

ERROR

FATAL

FATAL

FATAL

Identifier

ISPN000291

ISPN000322

ISPN000477

ISPN000449

ISPN000450

ISPN000576

Message

Unable to apply X-Site state
chunk.

Unable to re-start x-site state
transfer to site <site-name>

Unable to perform operation
<operation-name> for site <site-
name>

XSite state transfer timeout
must be higher or equals than 1
(one).

XSite state transfer waiting time
between retries must be higher
or equals than 1 (one).

Cross-site Replication not
available for local cache.

Description

Indicates that Infinispan cannot
apply a batch of cache entries
during a state transfer
operation. Ensure that sites are
online and check network
status.

Indicates that Infinispan cannot
resume a state transfer
operation to a backup location.
Ensure that sites are online and
check network status.

Indicates that Infinispan cannot
successfully complete an
operation on a backup location.
If necessary adjust Infinispan
logging to get more fine-grained
logging messages.

Results when the value of the
timeout attribute is @ or a
negative number. Specify a
value of at least 1 for the
timeout attribute in the state
transfer configuration for your
cache definition.

Results when the value of the
wait-time attribute is @ or a
negative number. Specify a
value of at least 1 for the wait-
time attribute in the state
transfer configuration for your
cache definition.

Cross-site replication does not
work with the local cache
mode. Either remove the
backup configuration from the
local cache definition or use a
distributed or replicated cache
mode.

37

	Infinispan cross-site replication
	Table of Contents
	Chapter 1. Cross-site replication
	1.1. Cross-site replication
	1.2. Relay nodes
	1.3. Infinispan cache backups
	1.4. Backup strategies
	1.5. Automatic offline parameters for backup locations
	1.6. State transfer
	1.7. Client connections across sites
	1.7.1. Concurrent writes and conflicting entries

	1.8. Expiration with cross-site replication

	Chapter 2. Configuring Infinispan cross-site replication
	2.1. Configuring cluster transport for cross-site replication
	2.1.1. Custom JGroups RELAY2 stacks

	2.2. Adding backup locations to caches
	2.3. Backing up to caches with different names
	2.4. Configuring cross-site state transfer
	2.5. Configuring conflict resolution algorithms
	2.6. Cleaning tombstones for asynchronous backups
	2.7. Verifying cross-site views
	2.8. Configuring Hot Rod clients for cross-site replication

	Chapter 3. Performing cross-site operations with the CLI
	3.1. Bringing backup locations offline and online
	3.2. Configuring cross-site state transfer modes
	3.3. Pushing state to backup locations

	Chapter 4. Performing cross-site operations with the REST API
	4.1. Getting status of all backup locations
	4.2. Getting status of specific backup locations
	4.3. Taking backup locations offline
	4.4. Bringing backup locations online
	4.5. Pushing state to backup locations
	4.6. Canceling state transfer
	4.7. Getting state transfer status
	4.8. Clearing state transfer status
	4.9. Modifying take offline conditions
	4.10. Canceling state transfer from receiving sites
	4.11. Getting status of backup locations
	4.12. Taking backup locations offline
	4.13. Bringing backup locations online
	4.14. Retrieving the state transfer mode
	4.15. Setting the state transfer mode
	4.16. Starting state transfer
	4.17. Canceling state transfer

	Chapter 5. Performing cross-site operations via JMX
	5.1. Registering JMX MBeans
	5.2. Performing cross-site operations with JMX clients
	5.3. JMX MBeans for cross-site replication

	Chapter 6. Cross-site replication log messages
	6.1. Infinispan log messages for cross-site replication

