Querying Infinispan caches

Table of Contents

1. Indexing Infinispan caches
1.1. Configuring Infinispan to index caches
1.1.1. Index configuration
1.2. Indexing annotations
1.3. Rebuilding indexes
1.4. Non-indexed queries
2. Creating Ickle queries
2.1. Ickle queries
2.1.1. Pagination
2.1.2. Number of hits
2.1.3. Iteration
2.1.4. Named query parameters
2.1.5. Query execution
2.2.Ickle query language syntax
2.2.1. Filtering operators
2.2.2. Boolean conditions
2.2.3. Nested conditions
2.2.4. Projections with SELECT statements
2.2.5. Grouping and aggregation
2.2.6. DELETE statements
2.3. Full-text queries
2.3.1. Fuzzy queries
2.3.2. Range queries
2.3.3. Phrase queries
2.3.4. Proximity queries
2.3.5. Wildcard queries
2.3.6. Regular expression queries
2.3.7. Boosting queries
3. Querying remote caches
3.1. Querying caches from Hot Rod Java clients
3.2. Querying caches from Infinispan Console and CLI
3.3. Using analyzers with remote caches
3.3.1. Default analyzer definitions
3.3.2. Creating custom analyzer definitions
4. Querying embedded caches
4.1. Querying embedded caches
4.2. Entity mapping annotations
4.3. Programmatically mapping entities

© © 00 = N DD

11
11
11
11
12
12
13
13
13
14
15
15
15
17
17
17
18
18
18
18
18
19
20
20
24
26
27
28
30
30
32
33

5. Creating continuous queries
5.1. Continuous queries
5.1.1. Continuous queries and Infinispan performance
5.2. Creating continuous queries
6. Monitoring and tuning Infinispan queries
6.1. Getting query statistics

6.2. Tuning query performance

35
35
36
36
39
39
39

Use the Ickle query language with Infinispan caches to efficiently and quickly
gain real-time insights into your data. Learn how to configure indexing and
perform queries on remote and embedded caches.

Chapter 1. Indexing Infinispan caches

Infinispan can create indexes of values in your caches to improve query performance, providing
faster results than non-indexed queries. Indexing also lets you use full-text search capabilities in
your queries.

0 Infinispan uses Apache Lucene technology to index values in caches.

1.1. Configuring Infinispan to index caches

Enable indexing in your cache configuration and specify which entities Infinispan should include
when creating indexes.

You should always configure Infinispan to index caches when using queries. Indexing provides a
significant performance boost to your queries, allowing you to get faster insights into your data.

Procedure

1. Enable indexing in your cache configuration.

<distributed-cache>
<indexing>
<!-- Indexing confiquration goes here. -->
</indexing>
</distributed-cache>

Adding an indexing element to your configuration enables indexing without
@ the need to include the enabled=true attribute.
d For remote caches adding this element also implicitly configures encoding as

ProtoStream.

2. Specify the entities to index with the indexed-entity element.

<distributed-cache>
<indexing>
<indexed-entities>
<indexed-entity>...</indexed-entity>
</indexed-entities>
</indexing>
</distributed-cache>

Protobuf messages

» Specify the message declared in the schema as the value of the indexed-entity element, for
example:

<distributed-cache>
<indexing>
<indexed-entities>
<indexed-entity>org.infinispan.sample.Car</indexed-entity>
<indexed-entity>org.infinispan.sample.Truck</indexed-entity>
</indexed-entities>
</indexing>
</distributed-cache>

This configuration indexes the Book message in a schema with the book_sample package name.

package book_sample;

/* @Indexed */
message Book {

/* @Field(store = Store.YES, analyze
optional string title = 1;

Analyze.YES) */

/* @Field(store = Store.YES, analyze
optional string description = 2;
optional int32 publicationYear = 3; // no native Date type available in

Analyze.YES) */

Protobuf
repeated Author authors = 4;
¥
message Author {
optional string name = 1;
optional string surname = 2;

Java objects
 Specify the fully qualified name (FQN) of each class that includes the @Indexed annotation.

XML

<distributed-cache>
<indexing>
<indexed-entities>
<indexed-entity>book_sample.Book</indexed-entity>
</indexed-entities>
</indexing>
</distributed-cache>

ConfiqurationBuilder
import org.infinispan.configuration.cache.*;

ConfigurationBuilder config=new ConfigurationBuilder();
config.indexing().enable().storage(FILESYSTEM).path("/some/folder").addIndexedEntity(B
ook.class);

Additional resources

« org.infinispan.configuration.cache.IndexingConfigurationBuilder

1.1.1. Index configuration

Infinispan configuration controls how indexes are stored and constructed.

Index storage

You can configure how Infinispan stores indexes:

* On the host file system, which is the default and persists indexes between restarts.

* In JVM heap memory, which means that indexes do not survive restarts.
You should store indexes in JVM heap memory only for small datasets.

File system

<distributed-cache>
<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
<!-- Indexing confiquration goes here. -->
</indexing>
</distributed-cache>

JVM heap memory

<distributed-cache>
<indexing storage="local-heap">
<!-- Additional indexing configuration goes here. -->
</indexing>
</distributed-cache>

Index reader

The index reader is an internal component that provides access to the indexes to perform queries.
As the index content changes, Infinispan needs to refresh the reader so that search results are up to
date. You can configure the refresh interval for the index reader. By default Infinispan reads the
index before each query if the index changed since the last refresh.

<distributed-cache>
<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
<l-- Sets an interval of one second for the index reader. -->
<index-reader refresh-interval="1000"/>
<!-- Additional indexing configuration goes here. -->
</indexing>
</distributed-cache>

Index writer

The index writer is an internal component that constructs an index composed of one or more
segments (sub-indexes) that can be merged over time to improve performance. Fewer segments
usually means less overhead during a query because index reader operations need to take into
account all segments.

Infinispan uses Apache Lucene internally and indexes entries in two tiers: memory and storage.
New entries go to the memory index first and then, when a flush happens, to the configured index
storage. Periodic commit operations occur that create segments from the previously flushed data
and make all the index changes permanent.

o The index-writer configuration is optional. The defaults should work for most
cases and custom configurations should only be used to tune performance.

<distributed-cache>
<indexing storage="filesystem" path="${java.io.tmpdir}/baseDir">
<index-writer commit-interval="2000"
low-level-trace="false"
max-buffered-entries="32"
queue-count="1"
queue-size="10000"
ram-buffer-size="400"
thread-pool-size="2">
<index-merge calibrate-by-deletes="true"
factor="3"
max-entries="2000"
min-size="10"
max-size="20"/>
</index-writer>
<!-- Additional indexing configuration goes here. -->
</indexing>
</distributed-cache>

Table 1. Index writer configuration attributes

Attribute

commit-interval

max-buffered-entries

ram-buffer-size

thread-pool-size

queue-count

queue-size

low-level-trace

Description

Amount of time, in milliseconds, that index
changes that are buffered in memory are
flushed to the index storage and a commit is
performed. Because operation is costly, small
values should be avoided. The default is 1000 ms
(1 second).

Maximum number of entries that can be
buffered in-memory before they are flushed to
the index storage. Large values result in faster
indexing but use more memory. When used in
combination with the ram-buffer-size attribute,
a flush occurs for whichever event happens
first.

Maximum amount of memory that can be used
for buffering added entries and deletions before
they are flushed to the index storage. Large
values result in faster indexing but use more
memory. For faster indexing performance you
should set this attribute instead of max-buffered-
entries. When used in combination with the
max-buffered-entries attribute, a flush occurs for
whichever event happens first.

Number of threads that execute write operations
to the index.

Number of internal queues to use for each
indexed type. Each queue holds a batch of
modifications that is applied to the index and
queues are processed in parallel. Increasing the
number of queues will lead to an increase of
indexing throughput, but only if the bottleneck
is CPU. For optimum results, do not set a value
for queue-count that is larger than the value for
thread-pool-size.

Maximum number of elements each queue can
hold. Increasing the queue-size value increases
the amount of memory that is used during
indexing operations. Setting a value that is too
small can block indexing operations.

Enables low-level trace information for indexing
operations. Enabling this attribute substantially
degrades performance. You should use this low-
level tracing only as a last resource for
troubleshooting.

To configure how Infinispan merges index segments, you use the index-merge sub-element.

Table 2. Index merge configuration attributes
Attribute Description

max-entries Maximum number of entries that an index
segment can have before merging. Segments
with more than this number of entries are not
merged. Smaller values perform better on
frequently changing indexes, larger values
provide better search performance if the index
does not change often.

factor Number of segments that are merged at once.
With smaller values, merging happens more
often, which uses more resources, but the total
number of segments will be lower on average,
increasing search performance. Larger values
(greater than 10) are best for heavy writing
scenarios.

min-size Minimum target size of segments, in MB, for
background merges. Segments smaller than this
size are merged more aggressively. Setting a
value that is too large might result in expensive
merge operations, even though they are less
frequent.

max-size Maximum size of segments, in MB, for
background merges. Segments larger than this
size are never merged in the background.
Settings this to a lower value helps reduce
memory requirements and avoids some merging
operations at the cost of optimal search speed.
This attribute is ignored when forcefully
merging an index and max-forced-size applies
instead.

max-forced-size Maximum size of segments, in MB, for forced
merges and overrides the max-size attribute. Set
this to the same value as max-size or lower.
However setting the value too low degrades
search performance because documents are
deleted.

Attribute Description

calibrate-by-deletes Whether the number of deleted entries in an
index should be taken into account when
counting the entries in the segment. Setting
false will lead to more frequent merges caused
by max-entries, but will more aggressively merge
segments with many deleted documents,
improving query performance.

Additional resources

* Infinispan configuration schema reference

1.2. Indexing annotations

When you enable indexing in caches, you configure Infinispan to create indexes. You also need to
provide Infinispan with a structured representation of the entities in your caches so it can actually
index them.

There are two annotations that control the entities and fields that Infinispan indexes:

@Indexed
Indicates entities, or Protobuf message types, that Infinispan indexes.

@Field
Indicates fields that Infinispan indexes and has the following attributes:

Attrib Description Values
ute
index Controls if Infinispan includes fields in indexes. Index.YES or Index.NO

store Allows Infinispan to store fields in indexes so you can Store.YES or Store.NO
use them for projections.

analyze Includes fields in full-text searches. Analyze.NO or specifies an
analyzer definition
Remote caches

You can provide Infinispan with indexing annotations for remote caches in two ways:

* Annotate your Java classes directly with @ProtoDoc("@Indexed") and @ProtoDoc("@Field(-:-)").
You then generate Protobuf schema, .proto files, before uploading them to Infinispan Server.
* Annotate Protobuf schema directly with @Indexed and @Field(---).
You then upload your Protobuf schema to Infinispan Server.

For example, the following schema uses the @Field annotation:

/**

* @Field(analyze = Analyze.YES, store = Store.YES)
*/
required string street = 1;

Embedded caches

For embedded caches, you add indexing annotations to your Java classes according to how
Infinispan stores your entries.

Use the @Indexed and @Field annotations, along with other Hibernate Search annotations such as
@FullTextField.

1.3. Rebuilding indexes

Rebuilding an index reconstructs it from the data stored in the cache. You should rebuild indexes
when you change things like the definitions of indexed types or analyzers. Likewise, you can
rebuild indexes after you delete them for whatever reason.

Rebuilding indexes can take a long time to complete because the process takes
o place for all data in the grid. While the rebuild operation is in progress, queries
might also return fewer results.

Procedure

Rebuild indexes in one of the following ways:

» Call the reindexCache() method to programmatically rebuild an index from a Hot Rod Java
client:

remoteCacheManager.administration().reindexCache("MyCache");

r . . _
O For remote caches you can also rebuild indexes from Infinispan Console.
w

e Call the index.run() method to rebuild indexes for embedded caches as follows:

Indexer indexer = Search.getIndexer(cache);
CompletionStage<Void> future = index.run();

1.4. Non-indexed queries

Infinispan recommends indexing caches for the best performance for queries. However you can
query caches that are non-indexed.

» For embedded caches, you can perform non-indexed queries on Plain Old Java Objects (POJOs).

* For remote caches, you must use ProtoStream encoding with the application/x-protostream
media type to perform non-indexed queries.

10

Chapter 2. Creating Ickle queries

Infinispan provides an Ickle query language that lets you create relational and full-text queries.

2.1. Ickle queries

To use the API, first obtain a QueryFactory to the cache and then call the .create() method, passing
in the string to use in the query. Each QueryFactory instance is bound to the same Cache instance as
the Search, but it is otherwise a stateless and thread-safe object that can be used for creating
multiple queries in parallel.

For instance:

// Remote Query, using protobuf
QueryFactory qf = org.infinispan.client.hotrod.Search.getQueryFactory(remoteCache);
Query<Transaction> q = qf.create("from sample_bank_account.Transaction where amount >

20");

// Embedded Query using Java Objects
QueryFactory qf = org.infinispan.query.Search.getQueryFactory(cache);
Query<Transaction> q = gqf.create("from org.infinispan.sample.Book where price > 20");

// Execute the query
QueryResult<Book> queryResult = g.execute();

A query will always target a single entity type and is evaluated over the contents of
o a single cache. Running a query over multiple caches or creating queries that
target several entity types (joins) is not supported.

Executing the query and fetching the results is as simple as invoking the execute() method of the
Query object. Once executed, calling execute() on the same instance will re-execute the query.
2.1.1. Pagination

You can limit the number of returned results by using the Query.maxResults(int maxResults). This
can be used in conjunction with Query.startOffset(long startOffset) to achieve pagination of the
result set.

// sorted by year and match all books that have "clustering" in their title

// and return the third page of 10 results

Query<Book> query = queryFactory.create("FROM org.infinispan.sample.Book WHERE title
like '%clustering%' ORDER BY year").startOffset(20).maxResults(10)

2.1.2. Number of hits

The QueryResult object has the .hitCount() method to return the total number of results of the

11

query, regardless of any pagination parameter. The hit count is only available for indexed queries
for performance reasons.

2.1.3. Iteration

The Query object has the .iterator() method to obtain the results lazily. It returns an instance of
(loseablelterator that must be closed after usage.

o The iteration support for Remote Queries is currently limited, as it will first fetch
all entries to the client before iterating.

2.1.4. Named query parameters

Instead of building a new Query object for every execution it is possible to include named
parameters in the query which can be substituted with actual values before execution. This allows
a query to be defined once and be efficiently executed many times. Parameters can only be used on
the right-hand side of an operator and are defined when the query is created by supplying an object
produced by the org.infinispan.query.dsl.Expression.param(String paramName) method to the
operator instead of the usual constant value. Once the parameters have been defined they can be
set by invoking either Query.setParameter(parameterName, value) or
Query.setParameters(parameterMap) as shown in the examples below.

QueryFactory queryFactory = Search.getQueryFactory(cache);

// Defining a query to search for various authors and publication years

Query<Book> query = queryFactory.create("SELECT title FROM org.infinispan.sample.Book
WHERE author = :authorName AND publicationYear = :publicationYear").build();

// Set actual parameter values
query.setParameter("authorName", "Doe");

query.setParameter("publicationYear", 2010);

// Execute the query
List<Book> found = query.execute().list();

Alternatively, you can supply a map of actual parameter values to set multiple parameters at once:

Setting multiple named parameters at once
Map<String, Object> parameterMap = new HashMap<>();
parameterMap.put("authorName", "Doe");

parameterMap.put("publicationYear", 2010);

query.setParameters(parameterMap);

12

A significant portion of the query parsing, validation and execution planning
o effort is performed during the first execution of a query with parameters. This

effort is not repeated during subsequent executions leading to better performance

compared to a similar query using constant values instead of query parameters.

2.1.5. Query execution
The Query API provides two methods for executing Ickle queries on a cache:

e Query.execute() runs a SELECT statement and returns a result.

e Query.executeStatement() runs a DELETE statement and modifies data.

0 You should always invoke executeStatement() to modify data and invoke execute()
to get the result of a query.

Additional resources

* org.infinispan.query.dsl.Query.execute()

» org.infinispan.query.dsl.Query.executeStatement()

2.2. Ickle query language syntax

The Ickle query language is subset of the JPQL query language, with some extensions for full-text.
The parser syntax has some notable rules:

» Whitespace is not significant.

» Wildcards are not supported in field names.

» A field name or path must always be specified, as there is no default field.

* §& and || are accepted instead of AND or OR in both full-text and JPA predicates.

* | may be used instead of NOT.

* A missing boolean operator is interpreted as OR.

 String terms must be enclosed with either single or double quotes.

* Fuzziness and boosting are not accepted in arbitrary order; fuzziness always comes first.
» I=is accepted instead of <>.

* Boosting cannot be applied to >>=,<,<= operators. Ranges may be used to achieve the same
result.

2.2.1. Filtering operators

Ickle support many filtering operators that can be used for both indexed and non-indexed fields.

13

Oper
ator

in

like

Description

Checks that the left operand is equal to one of the elements
from the Collection of values given as argument.

Checks that the left argument (which is expected to be a

String) matches a wildcard pattern that follows the JPA rules.

Checks that the left argument is an exact match of the given
value.

Checks that the left argument is different from the given
value.

Checks that the left argument is greater than the given value.

Checks that the left argument is greater than or equal to the
given value.

Checks that the left argument is less than the given value.

Checks that the left argument is less than or equal to the
given value.

Checks that the left argument is between the given range
limits.

2.2.2. Boolean conditions

Example

FROM Book WHERE isbn IN
(‘71', 'X1234")

FROM Book WHERE title LIKE
"%Java%'

FROM Book WHERE name =
'"Programming Java'

FROM Book WHERE language
I= "English’

FROM Book WHERE price > 20

FROM Book WHERE price >=
20

FROM Book WHERE year <
2020

FROM Book WHERE price <«
50

FROM Book WHERE price
BETWEEN 50 AND 100

Combining multiple attribute conditions with logical conjunction (and) and disjunction (or)
operators in order to create more complex conditions is demonstrated in the following example.
The well known operator precedence rule for boolean operators applies here, so the order of the
operators is irrelevant. Here and operator still has higher priority than or even though or was
invoked first.

match all books that have "Data Grid"

in their title

or have an author named "Manik" and their description contains "clustering"

FROM org.infinispan.sample.Book WHERE title LIKE '%Data Grid%' OR author.name = '

Manik' AND description like

"%clustering%’

Boolean negation has highest precedence among logical operators and applies only to the next
simple attribute condition.

match all books that do not have "Data Grid" in their title and are authored by
"Manik"

FROM org.infinispan.sample.Book WHERE title != 'Data Grid' AND author.name =

14

'"Manik'

2.2.3. Nested conditions

Changing the precedence of logical operators is achieved with parenthesis:

match all books that have an author named "Manik" and their title contains

"Data Grid" or their description contains "clustering"

FROM org.infinispan.sample.Book WHERE author.name = 'Manik' AND (title like '%Data
Grid%"' OR description like '% clustering%')

2.2.4. Projections with SELECT statements

In some use cases returning the whole domain object is overkill if only a small subset of the
attributes are actually used by the application, especially if the domain entity has embedded
entities. The query language allows you to specify a subset of attributes (or attribute paths) to
return - the projection. If projections are used then the QueryResult.list() will not return the whole
domain entity but will return a List of Object[], each slot in the array corresponding to a projected
attribute.

match all books that have "Data Grid" in their title or description

and return only their title and publication year

SELECT title, publicationYear FROM org.infinispan.sample.Book WHERE title like '%Data
Grid%' OR description like '%Data Grid%'

Sorting

Ordering the results based on one or more attributes or attribute paths is done with the ORDER BY
clause. If multiple sorting criteria are specified, then the order will dictate their precedence.

match all books that have "Data Grid" in their title or description

and return them sorted by the publication year and title

FROM org.infinispan.sample.Book WHERE title like '%Data Grid%' ORDER BY
publicationYear DESC, title ASC

2.2.5. Grouping and aggregation

Infinispan has the ability to group query results according to a set of grouping fields and construct
aggregations of the results from each group by applying an aggregation function to the set of values
that fall into each group. Grouping and aggregation can only be applied to projection queries
(queries with one or more field in the SELECT clause).

The supported aggregations are: avg, sum, count, max, and min.

The set of grouping fields is specified with the GROUP BY clause and the order used for defining
grouping fields is not relevant. All fields selected in the projection must either be grouping fields or
else they must be aggregated using one of the grouping functions described below. A projection
field can be aggregated and used for grouping at the same time. A query that selects only grouping

15

fields but no aggregation fields is legal. Example: Grouping Books by author and counting them.

SELECT author, COUNT(title) FROM org.infinispan.sample.Book WHERE title LIKE '

%engine%' GROUP BY author

A projection query in which all selected fields have an aggregation function
applied and no fields are used for grouping is allowed. In this case the
aggregations will be computed globally as if there was a single global group.

Aggregations

You can apply the following aggregation functions to a field:

Table 3. Index merge attributes

Aggregation function

avg()

count()

max()

min()

sum()

Table 4. Table sum return type
Field Type

Integral (other than BigInteger)
Float or Double

BigInteger

BigDecimal

16

Description

Computes the average of a set of numbers.
Accepted values are primitive numbers and
instances of java.lang.Number. The result is
represented as java.lang.Double. If there are no
non-null values the result is null instead.

Counts the number of non-null rows and returns
a java.lang.Long. If there are no non-null values
the result is 0 instead.

Returns the greatest value found. Accepted
values must be instances of
java.lang.Comparable. If there are no non-null
values the result is null instead.

Returns the smallest value found. Accepted
values must be instances of
java.lang.Comparable. If there are no non-null
values the result is null instead.

Computes the sum of a set of Numbers. If there
are no non-null values the result is null instead.
The following table indicates the return type
based on the specified field.

Return Type
Long

Double
Biginteger

BigDecimal

Evaluation of queries with grouping and aggregation

Aggregation queries can include filtering conditions, like usual queries. Filtering can be performed
in two stages: before and after the grouping operation. All filter conditions defined before invoking
the groupBy() method will be applied before the grouping operation is performed, directly to the
cache entries (not to the final projection). These filter conditions can reference any fields of the
queried entity type, and are meant to restrict the data set that is going to be the input for the
grouping stage. All filter conditions defined after invoking the groupBy() method will be applied to
the projection that results from the projection and grouping operation. These filter conditions can
either reference any of the groupBy() fields or aggregated fields. Referencing aggregated fields that
are not specified in the select clause is allowed; however, referencing non-aggregated and non-
grouping fields is forbidden. Filtering in this phase will reduce the amount of groups based on their
properties. Sorting can also be specified similar to usual queries. The ordering operation is
performed after the grouping operation and can reference any of the groupBy() fields or aggregated
fields.

2.2.6. DELETE statements

You can delete entities from Infinispan caches with the following syntax:
DELETE FROM <entityName> [WHERE condition]

» Reference only single entities with <entityName>. DELETE queries cannot use joins.

 WHERE conditions are optional.
DELETE queries cannot use any of the following:

* Projections with SELECT statements
* Grouping and aggregation

* ORDER BY clauses

(;) Invoke the Query.executeStatement() method to execute DELETE statements.

Additional resources

* org.infinispan.query.dsl.Query.executeStatement()
2.3. Full-text queries
You can perform full-text searches with the Ickle query language.

2.3.1. Fuzzy queries

To execute a fuzzy query add ~ along with an integer, representing the distance from the term used,
after the term. For instance

17

FROM sample_bank_account.Transaction WHERE description : 'cofee'~2

2.3.2. Range queries

To execute a range query define the given boundaries within a pair of braces, as seen in the
following example:

FROM sample_bank_account.Transaction WHERE amount : [20 to 50]

2.3.3. Phrase queries

A group of words can be searched by surrounding them in quotation marks, as seen in the
following example:

FROM sample_bank_account.Transaction WHERE description : 'bus fare'

2.3.4. Proximity queries

To execute a proximity query, finding two terms within a specific distance, add a ~ along with the
distance after the phrase. For instance, the following example will find the words canceling and fee
provided they are not more than 3 words apart:

FROM sample_bank_account.Transaction WHERE description : 'canceling fee'~3

2.3.5. Wildcard queries

To search for "text" or "test", use the ? single-character wildcard search:
FROM sample_bank_account.Transaction where description : 'te?t’
To search for "test", "tests", or "tester", use the * multi-character wildcard search:

FROM sample_bank_account.Transaction where description : 'test*'

2.3.6. Regular expression queries

Regular expression queries can be performed by specifying a pattern between /. Ickle uses Lucene’s
regular expression syntax, so to search for the words moat or boat the following could be used:

FROM sample_library.Book where title : /[mb]oat/

18

2.3.7. Boosting queries

Terms can be boosted by adding a ” after the term to increase their relevance in a given query, the
higher the boost factor the more relevant the term will be. For instance to search for titles
containing beer and wine with a higher relevance on beer, by a factor of 3, the following could be
used:

FROM sample_library.Book WHERE title : beer”3 OR wine

19

Chapter 3. Querying remote caches

You can index and query remote caches on Infinispan Server.

3.1. Querying caches from Hot Rod Java clients

Infinispan lets you programmatically query remote caches from Java clients through the Hot Rod
endpoint. This procedure explains how to index query a remote cache that stores Book instances.

Prerequisites

* Add the ProtoStream processor to your pom. xml.

Infinispan provides this processor for the @ProtoField and @ProtoDoc annotations so you can
generate Protobuf schemas and perform queries.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-bom</artifactId>
<version>${version.infinispan}</version>
<type>pom</type>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupld>org.infinispan.protostream</groupId>
<artifactId>protostream-processor</artifactId>
<scope>provided</scope>
</dependency>
</dependencies>

Procedure

1. Add indexing annotations to your class, as in the following example:

20

Book.java

import org.infinispan.protostream.annotations.ProtoDoc;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

@ProtoDoc("@Indexed")
public class Book {

@ProtoDoc("@Field(index=Index.YES, analyze = Analyze.YES, store
@ProtoField(number = 1)
final String title;

Store.NO)")

@ProtoDoc("@Field(index=Index.YES, analyze Store.NO)")
@ProtoField(number = 2)

final String description;

Analyze.YES, store

Store.NO)")

@ProtoDoc("@Field(index=Index.YES, analyze
@ProtoField(number = 3, defaultValue = "0")
final int publicationYear;

Analyze.YES, store

@ProtoFactory

Book(String title, String description, int publicationYear) {
this.title = title;
this.description = description;
this.publicationYear = publicationYear;

}
// public Getter methods omitted for brevity

2. Implement the SerializationContextInitializer interface in a new class and then add the
@AutoProtoSchemaBuilder annotation.

a. Reference the class that includes the @ProtoField and @ProtoDoc annotations with the
includeClasses parameter.

b. Define a name for the Protobuf schema that you generate and filesystem path with the
schemaFileName and schemaFilePath parameters.

c. Specify the package name for the Protobuf schema with the schemaPackageName parameter.

21

RemoteQuerylnitializer.java

import org.infinispan.protostream.SerializationContextInitializer;
import org.infinispan.protostream.annotations.AutoProtoSchemaBuilder;

(
includeClasses = {

Book.class
I,
schemaFileName = "book.proto",
schemaFilePath = "proto/",

schemaPackageName = "book_sample")
public interface RemoteQueryInitializer extends SerializationContextInitializer
{
}

3. Compile your project.

The code examples in this procedure generate a proto/book.proto schema and an
RemoteQueryInitializerImpl.java implementation of the annotated Book class.

Next steps

Create a remote cache that configures Infinispan to index your entities. For example, the following
remote cache indexes the Book entity in the book.proto schema that you generated in the previous
step:

<replicated-cache name="books">
<indexing>
<indexed-entities>
<indexed-entity>book_sample.Book</indexed-entity>
</indexed-entities>
</indexing>
</replicated-cache>

The following RemoteQuery class does the following:

» Registers the RemoteQueryInitializerImpl serialization context with a Hot Rod Java client.
» Registers the Protobuf schema, book.proto, with Infinispan Server.
* Adds two Book instances to the remote cache.

* Performs a full-text query that matches books by keywords in the title.

RemoteQuery.java
package org.infinispan;
import java.nio.file.Files;

import java.nio.file.Path;

22

import
import

import
import
import
import
import
import
import

public

java.nio.file.Paths;
java.util.Llist;

org.infinispan.client.hotrod.RemoteCache;
org.infinispan.client.hotrod.RemoteCacheManager;
org.infinispan.client.hotrod.Search;
org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
org.infinispan.query.dsl.Query;
org.infinispan.query.dsl.QueryFactory;
org.infinispan.query.remote.client.ProtobufMetadataManagerConstants;

class RemoteQuery {

public static void main(String[] args) throws Exception {

.build

ConfigurationBuilder clientBuilder = new ConfigurationBuilder();

// RemoteQueryInitializerImpl is generated

clientBuilder.addServer().host("127.0.0.1").port(11222)
.security().authentication().username("user").password("user")
.addContextInitializers(new RemoteQueryInitializerImpl());

RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder

0);

// Grab the generated protobuf schema and registers in the server.

Path proto = Paths.get(RemoteQuery.class.getClassLoader()
.getResource("proto/book.proto").toURI());

String protoBufCacheName = ProtobufMetadataManagerConstants

.PROTOBUF_METADATA_CACHE_NAME;

remoteCacheManager.getCache(protoBufCacheName).put("book.proto", Files

.readString(proto));

2015);

// Obtain the 'books' remote cache
RemoteCache<Object, Object> remoteCache = remoteCacheManager.getCache("books");

// Add some Books
Book book1 = new Book("Infinispan in Action", "Learn Infinispan with using it",

Book book2 = new Book("Cloud-Native Applications with Java and Quarkus", "Build

robust and reliable cloud applications”, 2019);

title:

remoteCache.put(1, book1);
remoteCache.put(2, book2);

// Execute a full-text query

QueryFactory queryFactory = Search.getQueryFactory(remoteCache);
Query<Book> query = queryFactory.create("FROM book_sample.Book WHERE
ljavavn);

List<Book> list = query.execute().list(); // Voila! We have our book back from

the cache!

}

23

Additional resources

* Marshalling and Encoding Data for more information about creating serialization contexts and
registering Protobuf schema.

e ProtoStream annotations for more information about the @ProtoField, @ProtoDoc, and
@AutoProtoSchemaBuilder annotations.

3.2. Querying caches from Infinispan Console and CLI

Infinispan Console and the Infinispan Command Line Interface (CLI) let you query indexed and
non-indexed remote caches. You can also use any HTTP client to index and query caches via the
REST APIL

This procedure explains how to index and query a remote cache that stores Person instances.

Prerequisites

* Have at least one running Infinispan Server instance.

* Have Infinispan credentials with create permissions.

Procedure

1. Add indexing annotations to your Protobuf schema, as in the following example:

package org.infinispan.example;

/* @Indexed */

message Person {
/* @Field(index=Index.YES, store = Store.NO, analyze = Analyze.NO) */
optional int32 id = 1;

/* @Field(index=Index.YES, store
required string name = 2;

Analyze.NO) */

Store.YES, analyze

/* @Field(index=Index.YES, store = Store.YES, analyze
required string surname = 3;

Analyze.NO) */

/* @Field(index=Index.YES, store
optional int32 age = 6;

Store.YES, analyze = Analyze.NO) */

From the Infinispan CLI, use the schema command with the --upload= argument as follows:

schema --upload=person.proto person.proto

2. Create a cache named people that uses ProtoStream encoding and configures Infinispan to

24

index entities declared in your Protobuf schema.

The following cache indexes the Person entity from the previous step:

<distributed-cache name="people">
<encoding media-type="application/x-protostream"/>
<indexing>
<indexed-entities>
<indexed-entity>org.infinispan.example.Person</indexed-entity>
</indexed-entities>
</indexing>
</distributed-cache>

From the CLIL use the create cache command with the --file= argument as follows:

create cache --file=people.xml people

3. Add entries to the cache.

To query a remote cache, it needs to contain some data. For this example procedure, create
entries that use the following JSON values:

PersonOne

n,.n

"_type":"org.infinispan.example.Person",
"id":1,
"name":"Person",

nm.,.n

"surname":"One",

"age":44
+
PersonTwo
{

"_type":"org.infinispan.example.Person",
"id":2,
"name":"Person",

"surname":"Two",
"age":27

25

PersonThree

n,n

"_type":"org.infinispan.example.Person"”,
"id":3,

"name":"Person",

"surname":"Three",

"age":35

From the CLI, use the put command with the --file= argument to add each entry, as follows:

put --encoding=application/json --file=personone.json personone

7 From Infinispan Console, you must select Custom Type for the Value content
- type field when you add values in JSON format with custom types .

4. Query your remote cache.

From the CLIL, use the query command from the context of the remote cache.

query "from org.infinispan.example.Person p WHERE p.name='Person' ORDER BY p.age
ASC"

The query returns all entries with a name that matches Person by age in ascending order.

Additional resources

* Infinispan REST API

3.3. Using analyzers with remote caches

Analyzers convert input data into terms that you can index and query. You specify analyzer
definitions with the @Field annotation in your Java classes or directly in Protobuf schema.

Procedure
1. Include the Analyze.YES attribute to indicate that the property is analyzed.

2. Specify the analyzer definition with the @Analyzer annotation.

26

Protobuf schema

/* ©@Indexed */
message TestEntity {

/* @Field(store = Store.YES, analyze = Analyze.YES, analyzer
@Analyzer(definition = "keyword")) */
optional string id = 1;

/* @Field(store = Store.YES, analyze
@Analyzer(definition = "simple")) */
optional string name = 2;

Analyze.YES, analyzer

}

Java classes

("@Field(store = Store.YES, analyze
@Analyzer(definition = \"keyword\"))")
(1)
final String id;

Analyze.YES, analyzer

("@Field(store = Store.YES, analyze
@Analyzer(definition = \"simple\"))")
(2)

final String description;

Analyze.YES, analyzer

3.3.1. Default analyzer definitions

Infinispan provides a set of default analyzer definitions.

Definition Description

standard Splits text fields into tokens, treating whitespace
and punctuation as delimiters.

simple Tokenizes input streams by delimiting at non-
letters and then converting all letters to
lowercase characters. Whitespace and non-
letters are discarded.

whitespace Splits text streams on whitespace and returns
sequences of non-whitespace characters as
tokens.

keyword Treats entire text fields as single tokens.

stemmer Stems English words using the Snowball Porter
filter.

ngram Generates n-gram tokens that are 3 grams in size
by default.

27

Definition Description

filename Splits text fields into larger size tokens than the
standard analyzer, treating whitespace as a
delimiter and converts all letters to lowercase
characters.

These analyzer definitions are based on Apache Lucene and are provided "as-is". For more
information about tokenizers, filters, and CharFilters, see the appropriate Lucene documentation.

3.3.2. Creating custom analyzer definitions

Create custom analyzer definitions and add them to your Infinispan Server installations.

Prerequisites

* Stop Infinispan Server if it is running.

Infinispan Server loads classes at startup only.

Procedure

1. Implement the ProgrammaticSearchMappingProvider APIL
2. Package your implementation in a JAR with the fully qualified class (FQN) in the following file:

META-INF/services/org.infinispan.query.spi.ProgrammaticSearchMappingProvider

3. Copy your JAR file to the server/1ib directory of your Infinispan Server installation.

4. Start Infinispan Server.

28

ProgrammaticSearchMappingProvider example

import
import
import
import
import
import
import

public

org.apache.lucene.analysis.core.LowerCaseFilterFactory;
org.apache.lucene.analysis.core.StopFilterFactory;
org.apache.lucene.analysis.standard.StandardFilterFactory;
org.apache.lucene.analysis.standard.StandardTokenizerFactory;
org.hibernate.search.cfqg.SearchMapping;

org.infinispan.Cache;
org.infinispan.query.spi.ProgrammaticSearchMappingProvider;

final class MyAnalyzerProvider implements ProgrammaticSearchMappingProvider {

public void defineMappings(Cache cache, SearchMapping searchMapping) {

searchMapping

.analyzerDef("standard-with-stop", StandardTokenizerFactory.class)
.filter(StandardFilterFactory.class)
.filter(LowerCaseFilterFactory.class)
.filter(StopFilterFactory.class);

29

Chapter 4. Querying embedded caches

Use embedded queries when you add Infinispan as a library to custom applications.

Protobuf mapping is not required with embedded queries. Indexing and querying are both done on
top of Java objects.

4.1. Querying embedded caches

This section explains how to query an embedded cache using an example cache named "books" that
stores indexed Book instances.

In this example, each Book instance defines which properties are indexed and specifies some
advanced indexing options with Hibernate Search annotations as follows:

Book.java
package org.infinispan.sample;
import java.time.lLocalDate;
import java.util.HashSet;
import java.util.Set;

import org.hibernate.search.mapper.pojo.mapping.definition.annotation.*;

// Annotate values with @Indexed to add them to indexes
// Annotate each fields according to how you want to index it

public class Book {

String title;

String description;

String isbn;

LocalDate publicationDate;

Set<Author> authors = new HashSet<Author>();

30

Author.java
package org.infinispan.sample;
import org.hibernate.search.mapper.pojo.mapping.definition.annotation.FullTextField;
public class Author {

@FullTextField
String name;

@FullTextField
String surname;
}
Procedure

1. Configure Infinispan to index the "books" cache and specify org.infinispan.sample.Book as the
entity to index.

<distributed-cache name="books">
<indexing path="${user.home}/index">
<indexed-entities>
<indexed-entity>org.infinispan.sample.Book</indexed-entity>
</indexed-entities>
</indexing>
</distributed-cache>

2. Obtain the cache.

import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.manager.EmbeddedCacheManager;

EmbeddedCacheManager manager = new DefaultCacheManager("infinispan.xml");
Cache<String, Book> cache = manager.getCache("books");

3. Perform queries for fields in the Book instances that are stored in the Infinispan cache, as in the
following example:

31

// Get the query factory from the cache
QueryFactory queryFactory = org.infinispan.query.Search.getQueryFactory(cache);

// Create an Ickle query that performs a full-text search using the ':' operator on
the 'title' and 'authors.name' fields

// You can perform full-text search only on indexed caches

Query<Book> fullTextQuery = queryFactory.create("FROM org.infinispan.sample.Book b
WHERE b.title:"infinispan' AND b.authors.name:'sanne'");

// Use the '=' operator to query fields in caches that are indexed or not

// Non full-text operators apply only to fields that are not analyzed

Query<Book> exactMatchQuery=queryFactory.create("FROM org.infinispan.sample.Book b
WHERE b.isbn = '12345678' AND b.authors.name : 'sanne'");

// You can use full-text and non-full text operators in the same query
Query<Book> query=queryFactory.create("FROM org.infinispan.sample.Book b where
b.authors.name : 'Stephen' and b.description : (+'dark' -'tower')");

// Get the results
List<Book> found=query.execute().list();

4.2. Entity mapping annotations

Add annotations to your Java classes to map your entities to indexes.

Hibernate Search API

Infinispan uses the Hibernate Search API to define fine grained configuration for indexing at entity
level. This configuration includes which fields are annotated, which analyzers should be used, how
to map nested objects, and so on.

The following sections provide information that applies to entity mapping annotations for use with
Infinispan.

For complete detail about these annotations, you should refer to the Hibernate Search manual.

@Documentld

Unlike Hibernate Search, using @DocumentId to mark a field as identifier does not apply to Infinispan
values; in Infinispan the identifier for all @Indexed objects is the key used to store the value. You can
still customize how the key is indexed using a combination of @Transformable , custom types and
custom FieldBridge implementations.

@Transformable keys

The key for each value needs to be indexed as well, and the key instance must be transformed in a
String. Infinispan includes some default transformation routines to encode common primitives, but
to use a custom key you must provide an implementation of org.infinispan.query.Transformer .

32

Registering a key Transformer via annotations

You can annotate your Kkey class with org.infinispan.query.Transformable and your custom
transformer implementation will be picked up automatically:

(transformer = CustomTransformer.class)
public class CustomKey {

}

public class CustomTransformer implements Transformer {
public Object fromString(String s) {

return new CustomKey(...);

public String toString(Object customType) {
CustomKey ck = (CustomKey) customType;
return ...

Registering a key Transformer via the cache indexing configuration

Use the key-transformers xml element in both embedded and server config:

<replicated-cache name="test">
<indexing auto-config="true">
<key-transformers>
<key-transformer key="com.mycompany.CustomKey"
transformer="com.mycompany.CustomTransformer"/>
</key-transformers>
</indexing>
</replicated-cache>

Alternatively, use the Java configuration API (embedded mode):

ConfigurationBuilder builder = ...
builder.indexing().enable()
.addKeyTransformer (CustomKey.class, CustomTransformer.class);

4.3. Programmatically mapping entities

You can programmatically map entities to the index as an alternative to annotating Java classes.

In the following example we map an object Author which is to be stored in the grid and made

33

searchable on two properties:

import org.apache.lucene.search.Query;

import org.hibernate.search.cfg.Environment;

import org.hibernate.search.cfg.SearchMapping;

import org.hibernate.search.query.dsl.QueryBuilder;
import org.infinispan.Cache;

import org.infinispan.confiqguration.cache.Configuration;
import org.infinispan.configuration.cache.ConfigurationBuilder;
import org.infinispan.confiqguration.cache.Index;

import org.infinispan.manager.DefaultCacheManager;
import org.infinispan.query.CacheQuery;

import org.infinispan.query.Search;

import org.infinispan.query.SearchManager;

import java.io.IOException;
import java.lang.annotation.ElementType;
import java.util.Properties;

SearchMapping mapping = new SearchMapping();
mapping.entity(Author.class).indexed()
.property("name", ElementType.METHOD).field()
.property("surname", ElementType.METHOD).field();

Properties properties = new Properties();
properties.put(Environment.MODEL_MAPPING, mapping);
properties.put("hibernate.search.[other options]", "[...]1");

Configuration infinispanConfiguration = new ConfigurationBuilder()
.indexing().index(Index.NONE)
.withProperties(properties)
.build();

DefaultCacheManager cacheManager = new DefaultCacheManager(infinispanConfiguration);

Cache<Long, Author> cache = cacheManager.getCache();
SearchManager sm = Search.getSearchManager(cache);

Author author = new Author(1, "Manik", "Surtani");
cache.put(author.getId(), author);

QueryBuilder gb = sm.buildQueryBuilderForClass(Author.class).get();
Query q = gb.keyword().onField("name").matching("Manik").createQuery();
CacheQuery cq = sm.getQuery(q, Author.class);

assert cq.getResultSize() == 1;

34

Chapter 5. Creating continuous queries

Applications can register listeners to receive continual updates about cache entries that match
query filters.

5.1. Continuous queries

Continuous queries provide applications with real-time notifications about data in Infinispan
caches that are filtered by queries. When entries match the query Infinispan sends the updated
data to any listeners, which provides a stream of events instead of applications having to execute
the query.

Continuous queries can notify applications about incoming matches, for values that have joined the
set; updated matches, for matching values that were modified and continue to match; and outgoing
matches, for values that have left the set.

For example, continuous queries can notify applications about all:

* Persons with an age between 18 and 25, assuming the Person entity has an age property and is
updated by the user application.

» Transactions for dollar amounts larger than $2000.

* Times where the lap speed of F1 racers were less than 1:45.00 seconds, assuming the cache
contains Lap entries and that laps are entered during the race.

o Continuous queries can use all query capabilities except for grouping, aggregation,
and sorting operations.

How continuous queries work
Continuous queries notify client listeners with the following events:

Join
A cache entry matches the query.

Update
A cache entry that matches the query is updated and still matches the query.

Leave
A cache entry no longer matches the query.

When a client registers a continuous query listener it immediately receives Join events for any
entries that match the query. Client listeners receive subsequent events each time a cache operation
modifies entries that match the query.

Infinispan determines when to send Join, Update, or Leave events to client listeners as follows:

o If the query on both the old and new value does not match, Infinispan does not sent an event.

* If the query on the old value does not match but the new value does, Infinispan sends a Join

35

event.
* If the query on both the old and new values match, Infinispan sends an Update event.

* If the query on the old value matches but the new value does not, Infinispan sends a Leave
event.

* If the query on the old value matches and the entry is then deleted or it expires, Infinispan
sends a Leave event.

5.1.1. Continuous queries and Infinispan performance

Continuous queries provide a constant stream of updates to applications, which can generate a
significant number of events. Infinispan temporarily allocates memory for each event it generates,
which can result in memory pressure and potentially lead to OutOfMemoryError exceptions,
especially for remote caches. For this reason, you should carefully design your continuous queries
to avoid any performance impact.

Infinispan strongly recommends that you limit the scope of your continuous queries to the smallest
amount of information that you need. To achieve this, you can use projections and predicates. For
example, the following statement provides results about only a subset of fields that match the
criteria rather than the entire entry:

SELECT field1, field2 FROM Entity WHERE x AND y

It is also important to ensure that each ContinuousQueryListener you create can quickly process all
received events without blocking threads. To achieve this, you should avoid any cache operations
that generate events unnecessarily.

5.2. Creating continuous queries

You can create continuous queries for remote and embedded caches.

Procedure

1. Create a Query object.
2. Obtain the ContinuousQuery object of your cache by calling the appropriate method:

o Remote caches: org.infinispan.client.hotrod.Search.getContinuousQuery(RemoteCache<K, V>
cache)

- Embedded caches: org.infinispan.query.Search.getContinuousQuery(Cache<K, V> cache)

3. Register the query and a ContinuousQueryListener object as follows:
continuousQuery.addContinuousQueryListener(query, listener);

4. When you no longer need the continuous query, remove the listener as follows:

36

continuousQuery.removeContinuousQuerylListener(listener);

Continuous query example
The following code example demonstrates a simple continuous query with an embedded cache.

In this example, the listener receives notifications when any Person instances under the age of 21
are added to the cache. Those Person instances are also added to the "matches"” map. When the
entries are removed from the cache or their age becomes greater than or equal to 21, they are
removed from "matches" map.

Registering a Continuous Query

import org.infinispan.query.api.continuous.ContinuousQuery;

import org.infinispan.query.api.continuous.ContinuousQueryListener;
import org.infinispan.query.Search;

import org.infinispan.query.dsl.QueryFactory;

import org.infinispan.query.dsl.Query;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

[...]

// We have a cache of Person objects.
Cache<Integer, Person> cache = ...

// Create a ContinuousQuery instance on the cache.
ContinuousQuery<Integer, Person> continuousQuery = Search.getContinuousQuery(cache);

// Define a query.

// In this example, we search for Person instances under 21 years of age.
QueryFactory queryFactory = Search.getQueryFactory(cache);

Query query = queryFactory.create("FROM Person p WHERE p.age < 21");

final Map<Integer, Person> matches = new ConcurrentHashMap<Integer, Person>();

// Define the ContinuousQuerylListener.
ContinuousQuerylListener<Integer, Person> listener = new ContinuousQuerylListener
<Integer, Person>() {
@0verride
public void resultJoining(Integer key, Person value) {
matches.put(key, value);
}

@0verride
public void resultUpdated(Integer key, Person value) {
// We do not process this event.

}

37

38

@0verride
public void resultlLeaving(Integer key) {
matches.remove(key);

}
+

// Add the listener and the query.
continuousQuery.addContinuousQuerylListener(query, listener);

[...]

// Remove the listener to stop receiving notifications.
continuousQuery.removeContinuousQueryListener(listener);

Chapter 6. Monitoring and tuning Infinispan
queries

Infinispan exposes statistics for queries and provides attributes that you can adjust to improve
query performance.

6.1. Getting query statistics

Collect statistics to gather information about performance of your indexes and queries, including
information such as the types of indexes and average time for queries to complete.

Procedure

Do one of the following:

» Invoke the getSearchStatistics() or getClusteredSearchStatistics() methods for embedded
caches.

» Use GET requests to obtain statistics for remote caches from the REST APIL

Embedded caches

// Statistics for the local cluster member
SearchStatistics statistics = Search.getSearchStatistics(cache);

// Consolidated statistics for the whole cluster
CompletionStage<SearchStatisticsSnapshot> statistics = Search
.getClusteredSearchStatistics(cache)

Remote caches

GET /v2/caches/{cacheName}/search/stats

6.2. Tuning query performance

Use the following guidelines to help you improve the performance of indexing operations and
queries.

Checking index usage statistics

Queries against partially indexed caches return slower results. For instance, if some fields in a
schema are not annotated then the resulting index does not include those fields.

Start tuning query performance by checking the time it takes for each type of query to run. If your
queries seem to be slow, you should make sure that queries are using the indexes for caches and
that all entities and field mappings are indexed.

Adjusting the commit interval for indexes

39

Indexing can degrade write throughput for Infinispan clusters. The commit-interval attribute
defines the interval, in milliseconds, between which index changes that are buffered in memory
are flushed to the index storage and a commit is performed.

This operation is costly so you should avoid configuring an interval that is too small. The default is
1000 ms (1 second).

Adjusting the refresh interval for queries

The refresh-interval attribute defines the interval, in milliseconds, between which the index
reader is refreshed.

The default value is 0, which returns data in queries as soon as it is written to a cache.

A value greater than 0 results in some stale query results but substantially increases throughput,
especially in write-heavy scenarios. If you do not need data returned in queries as soon as it is
written, you should adjust the refresh interval to improve query performance.

40

	Querying Infinispan caches
	Table of Contents
	Chapter 1. Indexing Infinispan caches
	1.1. Configuring Infinispan to index caches
	1.1.1. Index configuration

	1.2. Indexing annotations
	1.3. Rebuilding indexes
	1.4. Non-indexed queries

	Chapter 2. Creating Ickle queries
	2.1. Ickle queries
	2.1.1. Pagination
	2.1.2. Number of hits
	2.1.3. Iteration
	2.1.4. Named query parameters
	2.1.5. Query execution

	2.2. Ickle query language syntax
	2.2.1. Filtering operators
	2.2.2. Boolean conditions
	2.2.3. Nested conditions
	2.2.4. Projections with SELECT statements
	2.2.5. Grouping and aggregation
	2.2.6. DELETE statements

	2.3. Full-text queries
	2.3.1. Fuzzy queries
	2.3.2. Range queries
	2.3.3. Phrase queries
	2.3.4. Proximity queries
	2.3.5. Wildcard queries
	2.3.6. Regular expression queries
	2.3.7. Boosting queries

	Chapter 3. Querying remote caches
	3.1. Querying caches from Hot Rod Java clients
	3.2. Querying caches from Infinispan Console and CLI
	3.3. Using analyzers with remote caches
	3.3.1. Default analyzer definitions
	3.3.2. Creating custom analyzer definitions

	Chapter 4. Querying embedded caches
	4.1. Querying embedded caches
	4.2. Entity mapping annotations
	4.3. Programmatically mapping entities

	Chapter 5. Creating continuous queries
	5.1. Continuous queries
	5.1.1. Continuous queries and Infinispan performance

	5.2. Creating continuous queries

	Chapter 6. Monitoring and tuning Infinispan queries
	6.1. Getting query statistics
	6.2. Tuning query performance

