
Java SDK

Overview
The VersionOne Java SDK is a library built using Java that allows object-oriented access to the VersionOne API, which
is inherently a REST-based web service. Using the SDK you can query for simple or complex sets of information, update
information, and execute system-defined operations, without having to construct HTTP requests and responses or deal
with parsing the data contained in the HTTP responses. The SDK serves as a wrapper to the VersionOne API,
eliminating the need to code the infrastructure necessary for direct handling of HTTP requests and responses.

Practically all data in VersionOne is stored in the form of assets, which have attributes. Each asset is classified by an
asset type, which describes a number of attribute definitions, operations, and possibly a relationship to another asset
type. A list of all the types within VersionOne, including their attributes and operations, can be obtained using the Meta
API.

Simple queries can request a single VersionOne asset with several attributes. Complex queries can request multiple
assets meeting certain criteria, have the results sorted in a particular way, and even ask for a portion (or "page") of the
overall results. When constructing your queries, you must use the system name for the asset type you would like to
retrieve. This is true whether using the API directly or the SDK.

In terms of API authentication, the SDK supports using Basic (username and password), Windows Integrated (NTLM),
Access Tokens, and OAuth2.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

1

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Asset
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Attribute
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Asset_Type
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Attribute_Definition
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Operation
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Relationship
https://community.versionone.com/VersionOne_Connect/Developer_Library/Learn_the_API/Meta_API
https://community.versionone.com/VersionOne_Connect/Developer_Library/Learn_the_API/Meta_API
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Basic_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Windows_Integrated_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Access_Token_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/OAuth_2.0_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK

System Requirements
The current release of the Java SDK requires JRE 1.8 or higher, and VersionOne 8.0 or higher (though some features
are only available with newer releases).

Getting the Java SDK
There are two ways that you can get the SDK: by using Maven to import the SDK and its dependencies from the Maven
Central Repository, or by downloading the SDK and it associated dependencies from the VersionOne AppCatalog and
setting a reference to it manually from within your project.

The recommended approach is to use Maven as it will take care of all the dependencies for you, plus make it easier to
update the SDK as new versions become available.

Setting a reference using Maven

Assuming that you are using Eclipse as your IDE, use the following to steps to add the Java SDK to your project using
Maven:

1. Launch Eclipse and open your project.
2. Edit the POM file and add the following dependency with the actual SDK version number that you want to

reference:

<dependency>
<groupId>com.versionone</groupId>
<artifactId>VersionOne.SDK.Java.APIClient</artifactId>
<version>XX.X.X</version>

</dependency>

Setting a reference manually

Assuming that you are using Eclipse as your IDE, use the following to steps to manually add the Java SDK to your
project:

1. Download the latest stable build of the SDK from the AppCatalog page.
2. Save the ZIP file to a known location on your hard drive.
3. Unzip the SDK.
4. Launch Eclipse and open your project.
5. In the Package Explorer, right click on the project name then select Build Path, then Add External Archives.
6. Navigate to the directory that you downloaded the SDK to and select the VersionOne.SDK.Java.APIClient-

XX.X.X.jar file, then click Open.

While the Java SDK is fully supported by VersionOne, it is also open-sourced. You can get the source code for the SDK
from this GitHub repository: https://github.com/versionone/VersionOne.SDK.Java.APIClient

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

2

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22VersionOne.SDK.Java.APIClient%22
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22VersionOne.SDK.Java.APIClient%22
http://appcatalog.versionone.com/app/index.html#/Details/VersionOne.SDK.Java.APIClient
https://github.com/versionone/VersionOne.SDK.Java.APIClient
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK

Using the Java SDK
Once you properly set a reference to the SDK within your project, using it is simply a matter of making a connection to
VersionOne then writing the code to query, update, and create VersionOne assets, or execute operations against them.

The following topics discuss the major features of the SDK and demonstrate how you can make use of them:

• Creating a Connection
• Querying Assets
• Querying Asset History
• Querying Configurations and Localizations
• Creating Assets
• Updating Assets
• Executing Operations
• Executing Pass-Through Queries
• Working with Attachments and Images

Getting Help
While we strive to make the SDK as easy to use as possible, you may still occasionally need some help, and there are a
few different ways you can get it:

• Code Samples: A growing list of recipes for working with the VersionOne API. Check here first to see if an answer
already exists.

• StackOverflow: For asking question of the VersionOne Developer Community.
• VersionOne Support: Our support team is well versed in the VersionOne API, including accessing it via the SDK.
• VersionOne Technical Services: A paid support offering, this team provides API training, development pairing,

and complete custom development services.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

3

https://community.versionone.com/VersionOne_Connect/Developer_Library/Sample_Code
http://stackoverflow.com/questions/tagged/versionone
https://support.versionone.com/home
http://www.versionone.com/training/technical_services/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK

Creating Assets
When you create a new asset with the Java SDK, you need to specify the context of another asset that will be the
parent. For example, if you create a new Story asset you can specify which Scope (project) it should be created in.

Prior to creating an asset in VersionOne, you must first instantiate a V1Connector and Services object:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

IServices services = new Services(connector);

Creating a New Asset
This example shows how to create a Story asset in the context of a Scope with ID 1012:

Oid projectId = services.getOid("Scope:0");
IAssetType storyType = services.getMeta().getAssetType("Story");
Asset newStory = services.createNew(storyType, projectId);
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
newStory.setAttributeValue(nameAttribute, "My New Story");
services.save(newStory);

System.out.println(newStory.getOid().getToken());

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

4

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_Assets

System.out.println(newStory.getAttribute(storyType.getAttributeDefinition("Scope")).getValue());
System.out.println(newStory.getAttribute(nameAttribute).getValue());

/***** OUTPUT *****
Story:7617:9243
Scope:0
My New Story
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

5

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_Assets

Creating a Connection
Connecting to the VersionOne API via the Java SDK involves determining the URL of your VersionOne instance,
determining the API authentication type that you want use, determining your proxy credentials (if you use one), and then
building a connection object. To build a connection object you'll use the V1Connector object which is implemented
using a fluent builder interface.

Here's an example of how to use the V1Connector with an access token:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

A few things to point out abut the V1Connector:

• The Server Base URI is the URL that you use for your VersionOne instance and is typically in the form of
"http(s)://server name/instance name".

• The user agent header is used to pass the name and version number of your application to the API which can help
with log analysis should there be an issue.

• The build method is the builder's terminating method and returns the V1Connector object which you will then pass
to other objects when performing actions with the API.

The V1Connector is a new connector released with the 15.0.0.0 version of the Java SDK, and it replaces the
legacy V1APIConnector. The legacy connector is still available for use within the SDK but has been marked for
deprecation. It will be removed in a future release.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Connection
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

6

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Server_Base_URI
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/HTTP_User-Agent_Header
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Connection

Connecting with Basic Authentication
When using Basic authentication, you use the withUsernameAndPassword method, passing in the username and
password of the VersionOne member account that you want to connect with:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withUsernameAndPassword("username", "password")
.build();

Connecting with Windows Integrated Authentication
When using Windows Integrated Authentication, you use the withWindowsIntegrated method. If you want to use the
SDK with the currently logged in user's account, you do not need to pass any parameters:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withWindowsIntegrated()
.build();

Unlike the .NET SDK, the Java SDK does not support using Windows Integrated Authentication with specific user
credentials, you can only use the credentials of the currently logged in user.

Connecting with Access Tokens
When using Access Token Authentication, you use the withAccessToken method, passing in the access token
associated with the VersionOne member account that you want to connect with:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

When trying to use an access token when your VersionOne instance has been configured to use Windows Integrated
Authentication, you will need to use the special useOAuthEndpoints method of the connector. This method allows the
connector to bypass NTLM and authenticate directly to the API with an access token.

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.useOAuthEndpoints()
.build();

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Connection
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

7

https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Basic_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Windows_Integrated_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/.NET_SDK
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Access_Token_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Connection

Connecting with OAuth2 Tokens
As of Winter 2016 release notes our intent is to sunset OAuth2 in favor of Access Tokens.

When using OAuth2 Authentication, you use the withOAuth2Token method, passing in the OAuth2 access token
associated with the VersionOne member account that you want to connect with:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withOAuth2Token("AAEAAJa0PvSSjkBYffqqU2f5oPCFLimIhiiQaiM04VO-5p7Nmlm0W9bqM59...")
.build();

The Java SDK only supports connecting with a valid OAuth2 access token, it does not do the full authorization of the
token, nor does it refresh the token. If you wish to use OAuth2 as your authentication method, you may want to use a
third-party library like Apache OLTU or the Google OAuth Client Library to assist with generating and refreshing your
OAuth2 access tokens.

Connecting with a Proxy
If you are using a proxy in your environment, you can use the withProxy method, passing in a ProxyProvider object
hydrated with the URL, username, and password used to authenticate with the proxy:

ProxyProvider proxyProvider = new ProxyProvider(new URI("proxyURL"), "proxyUsername", "proxyPassword");

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.withProxy(proxyProvider)
.build();

You cannot use a proxy when connecting with Windows Integrated Authentication.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Connection
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

8

https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/OAuth_2.0_Authentication
https://oltu.apache.org/
https://code.google.com/p/google-oauth-java-client/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Connection

Creating a Services Object
Once you have created a V1Connector instance, you'll need to create an instance of the Services class, which is the
primary object that you will use to perform actions with the VersionOne API. There are three constructors for the
Services class. All of them require a V1Connector instance, however.

Creating a V1Connector Instance
Here's a simple example of creating a V1Connector instance. This example uses an Access Token. For other types of
connections, see the Creating a Connection topic.

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

Services(V1Connector v1Connector)
To create an instance of Services that creates an IMetaModel instance for you automatically, just use the one-
parameter version of the constructor, passing in your V1Connector instance. By default, the connector will not pre-load
the Meta information. If you need to do that, see the next overload.

IServices services = new Services(connector);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Services_Object
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

9

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/API_Authentication/Access_Token_Authentication
https://community.versionone.com/VersionOne_Connect/Developer_Library/Learn_the_API/Meta_API/Retrieve_metadata_for_all_system_assets
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Services_Object

Services(V1Connector connector, boolean preLoadMeta)
If you'd like to force the connector to pre-load the Meta information before you work with the Services instance, call this
version of the constructor and specify true for the second parameter. Note that this can cause the start-up time for your
code to take a long time, but it is ultimately faster if you do a significant number of queries against a large variety of
Asset types or Attributes. If you work with a smaller variety, then allowing the connector to dynamically fetch Meta is a
better approach.

IServices services = new Services(connector, true);

Services(V1Connector connector, IMetaModel metaModel)
Though it would rarely be needed for most purposes, if you want complete control over creating the IMetaModel
instance that you configure your Services instance with, you can use the third overload of the Services constructor.
One scenario for when you would use this is if you wish to create your own implementation of the IMetaModel interface
instead of relying upon the library-provided MetaModel class. You might do this if you wanted to cache definitions on
disk instead of reaching out to the instance for every call.

The following sample produces the same result as the previous constructor example:

// Using the library-provided MetaModel class's constructor
IMetaModel metaModel = new MetaModel(connector, false); // false indicates to NOT preload meta
IServices services = new Services(connector, metaModel);

If you do implement your own implementation of the IMetaModel interface, then your code would look something like
this:
ParseError: EOF expected (click for details)

Callstack:
at (VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Services_Object), /content/

body/div[2]/div[2]/div[2]/pre, line 3, column 12

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Services_Object
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

10

https://community.versionone.com/VersionOne_Connect/Developer_Library/Learn_the_API/Meta_API/Retrieve_metadata_for_all_system_assets
https://community.versionone.com/VersionOne_Connect/Developer_Library/Learn_the_API/Meta_API/Retrieve_metadata_for_all_system_assets
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Creating_a_Services_Object

Executing Operations
An operation is an action that is executed against a single asset. For example, to delete an asset you must execute the
Delete operation on the asset. To close or inactivate a asset, you use the Inactivate operation.

You can use the Meta API to determine the operations that a particular asset supports

Prior to executing an operation against an asset in VersionOne, you must first instantiate a V1Connector and Services
object:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

IServices services = new Services(connector);

In versions of the SDK prior to the 15.0.0.0 release, you would also have to instantiate a connector for
the MetaModel object. However, starting with the 15.0.0.0 release, that is no longer necessary.
The MetaModel object is now available from the getMeta method of the Services object. For more
advanced Services constructor overloads, see the Creating a Services Object topic.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Operations
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

11

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Operation
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Asset
https://community.versionone.com/VersionOne_Connect/Developer_Library/Learn_the_API/Meta_API
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Operations

Closing an Asset
This example shows how to close an asset using the executeOperation method of the Services object. Note the use of
the getOperation method to get the operation to execute:

IOperation closeOperation = services.getMeta().getOperation("Story.Inactivate");
Oid closeID = services.executeOperation(closeOperation, services.getOid("Story:7618"));

Query query = new Query(closeID.getMomentless());
IAttributeDefinition assetState = services.getMeta().getAttributeDefinition("Story.AssetState");
query.getSelection().add(assetState);
QueryResult result = services.retrieve(query);
Asset closeStory = result.getAssets()[0];
AssetState state = AssetState.valueOf(((Integer) closeStory.getAttribute(assetState).getValue()).intValue());

System.out.println(closeStory.getOid());
System.out.println(state.toString());

/***** OUTPUT *****
Story:7618
Closed
******************/

Reopening an Asset
This example shows how to reopen an asset using the executeOperation method of the Services object:

IOperation closeOperation = services.getMeta().getOperation("Story.Reactivate");
Oid closeID = services.executeOperation(closeOperation, services.getOid("Story:7618"));

Query query = new Query(closeID.getMomentless());
IAttributeDefinition assetState = services.getMeta().getAttributeDefinition("Story.AssetState");
query.getSelection().add(assetState);
QueryResult result = services.retrieve(query);
Asset closeStory = result.getAssets()[0];
AssetState state = AssetState.valueOf(((Integer) closeStory.getAttribute(assetState).getValue()).intValue());

System.out.println(closeStory.getOid());
System.out.println(state.toString());

/***** OUTPUT *****
Story:7618
Active
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Operations
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

12

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Operations

Deleting an Asset
This example shows how to delete an asset using the executeOperation method of the Services object:

IOperation deleteOperation = services.getMeta().getOperation("Story.Delete");
Oid deletedOID = services.executeOperation(deleteOperation, services.getOid("Story:7618"));

try {
Query query = new Query(deletedOID.getMomentless());
@SuppressWarnings("unused")
QueryResult result = services.retrieve(query);

} catch (ConnectionException e) {
System.out.println(String.format("%s has been deleted", deletedOID.getMomentless()));

}

/***** OUTPUT *****
Story:7618 has been deleted
******************/

The Delete operation returns the Oid, with the new Moment, of the deleted asset. Future current info queries will
automatically exclude deleted assets from results.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Operations
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

13

https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/OID_Token
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Moment
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Operations

Executing Pass-Through Queries
In addition to providing object model-like access to the VersionOne Data API, the Java SDK also provides a way to
execute queries using the Query API. The Query API provides read-only access to VersionOne data, and allows you to
submit hierarchical queries in a JSON or YAML format. In addition, data returned from the Query API is in a JSON
format.

Executing a JSON Query
In this example, a JSON query is used to get all Story assets with an estimate greater than ten:

String query =
"{" +
" \"from\": \"Story\"," +
" \"select\": [\"Name\",\"Number\"]" +
"}";

String result = services.executePassThroughQuery(query);
System.out.println(result);

This is an example of the raw JSON data that is returned:

[
[

{
"_oid": "Story:6555",
"Name": "Test Story on Scope:6527 - Name attribute"

},

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Pass-Through_Queries
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

14

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Pass-Through_Queries

{
"_oid": "Story:6588",
"Name": "Test Story Scope:6527 Query filter with multiple attributes"

}
]

]

Executing a YAML Query
In this example, a YAML query is used to get all Story assets with an estimate greater than ten, the raw JSON that is
returned is the same as when submitting the query in a JSON format:

String query = "from: Story\n" +
"select:\n" +
" - Name\n" +
" - Number\n";

String result = services.executePassThroughQuery(query);
System.out.println(result);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Pass-Through_Queries
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

15

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Executing_Pass-Through_Queries

Querying Assets
One of the most fundamental, if not the most common, things that you can do with the Java SDK is to query VersionOne
for information about the assets that it contains. To do so, all you need is a valid V1Connector object and an instance of
the Services object, which is the primary object that you will use to perform actions with the VersionOne API. Once you
have those, you can then write queries to to access data for just about any asset contained within VersionOne. Here's a
quick example of instantiating a V1Connector and Services object: V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>") .withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=") .build(); IServices services = new Services(connector); In
versions of the SDK prior to the 15.0.0.0 release, you would also have to instantiate a connector for the
MetaModel object. However, starting with the 15.0.0.0 release, that is no longer necessary. The MetaModel object is
now available from the getMeta method of the Services object. For more advanced Services constructor overloads, see
the Creating a Services Object topic.

Quick Start
Here's a quick example of instantiating a V1Connector and Services object:

V1Connector connector = V1Connector .withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();
IServices services = new Services(connector);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

16

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

In versions of the SDK prior to the 15.0.0.0 release, you would also have to instantiate a connector for the
MetaModel object. However, starting with the 15.0.0.0 release, that is no longer necessary. The
MetaModel object is now available from the getMeta method of the Services object. For more

advanced Services constructor overloads, see the Creating a Services Object topic.

Querying a Single Asset
In this example, the asset will have its OID populated, but will not have any other attributes populated. This is to
minimize the size of the data sets returned. The next example shows how to ask for an asset with specific attributes
populated:

Oid memberId = services.getOid("Member:20");
Query query = new Query(memberId);
QueryResult result = services.retrieve(query);
Asset member = result.getAssets()[0];

System.out.println(member.getOid().getToken());

/***** OUTPUT *****
Member:20
******************/

Querying an Asset for Specific Attributes
This example shows how to retrieve an asset with specific attributes using the getSelection method of the Query
object:

Oid memberId = services.getOid("Member:20");
Query query = new Query(memberId);
IAttributeDefinition nameAttribute = services.getMeta().getAttributeDefinition("Member.Name");
IAttributeDefinition emailAttribute = services.getMeta().getAttributeDefinition("Member.Email");
query.getSelection().add(nameAttribute);
query.getSelection().add(emailAttribute);
QueryResult result = services.retrieve(query);
Asset member = result.getAssets()[0];

System.out.println(member.getOid().getToken());
System.out.println(member.getAttribute(nameAttribute).getValue());
System.out.println(member.getAttribute(emailAttribute).getValue());

/***** OUTPUT *****
Member:20
Administrator
admin@company.com
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

17

https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/OID_Token
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Attribute
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

Query for a List of Assets
This example shows how to retrieve specific attributes for all the Stories contained within VersionOne:

IAssetType storyType = services.getMeta().getAssetType("Story");
Query query = new Query(storyType);
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
IAttributeDefinition estimateAttribute = storyType.getAttributeDefinition("Estimate");
query.getSelection().add(nameAttribute);
query.getSelection().add(estimateAttribute);
QueryResult result = services.retrieve(query);

for (Asset story : result.getAssets()) {
System.out.println(story.getOid().getToken());
System.out.println(story.getAttribute(nameAttribute).getValue());
System.out.println(story.getAttribute(estimateAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Story:1083
View Daily Call Count
5

Story:1554
Multi-View Customer Calendar
1 ...
******************/

Depending on your security role, you may not be able to see all the Story assets in the entire system.

Querying with Filtering on a Single Attribute
This example shows how to query using a FilterTerm with the setFilter method of the Query object to filter the results
that are returned. This query will retrieve only Task assets with a ToDo value of zero:

IAssetType taskType = services.getMeta().getAssetType("Task");
Query query = new Query(taskType);
IAttributeDefinition nameAttribute = taskType.getAttributeDefinition("Name");
IAttributeDefinition todoAttribute = taskType.getAttributeDefinition("ToDo");
query.getSelection().add(nameAttribute);
query.getSelection().add(todoAttribute);

FilterTerm toDoTerm = new FilterTerm(todoAttribute);
toDoTerm.equal(0);
query.setFilter(toDoTerm);
QueryResult result = services.retrieve(query);

for (Asset task : result.getAssets()) {

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

18

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

System.out.println(task.getOid().getToken());
System.out.println(task.getAttribute(nameAttribute).getValue());
System.out.println(task.getAttribute(todoAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Task:1153
Code Review
0

Task:1154
Design Component
0 ...
******************/

Querying with Filtering on Multiple Attributes
This example shows how to group multiple filter terms using the GroupFilterTerm and FilterTerm objects, then setting
the filter for the query using the setFilter method of the Query object. This query will retrieve only Defect assets in the
base system project with a ToDo value of zero:

Oid projectOid = services.getOid("Scope:0");
IAssetType assetType = services.getMeta().getAssetType("Defect");

Query query = new Query(assetType);
IAttributeDefinition projectAttribute = assetType.getAttributeDefinition("Scope");
IAttributeDefinition todoAttribute = assetType.getAttributeDefinition("ToDo");
query.getSelection().add(projectAttribute);
query.getSelection().add(todoAttribute);

FilterTerm projectTerm = new FilterTerm(projectAttribute);
projectTerm.equal(projectOid);
FilterTerm todoTerm = new FilterTerm(todoAttribute);
todoTerm.equal(0);

GroupFilterTerm groupFilter = new AndFilterTerm(projectTerm, todoTerm);
query.setFilter(groupFilter);

QueryResult result = services.retrieve(query);
for (Asset task : result.getAssets()) {

System.out.println(task.getOid().getToken());
System.out.println(task.getAttribute(projectAttribute).getValue());
System.out.println(task.getAttribute(todoAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Defect:37396
Scope:0
0.0

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

19

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

Defect:39675
Scope:0
0.0
******************/

Querying with Searching
This example shows how to use the setFind method of the Query object to search for text. This query will retrieve all
Story assets with the word "Urgent" in their name:

IAssetType requestType = services.getMeta().getAssetType("Story");
Query query = new Query(requestType);
IAttributeDefinition nameAttribute = requestType.getAttributeDefinition("Name");
query.getSelection().add(nameAttribute);

AttributeSelection selection = new AttributeSelection();
selection.add(nameAttribute);
query.setFind(new QueryFind("Urgent", selection));
QueryResult result = services.retrieve(query);

for (Asset request : result.getAssets())
{

System.out.println(request.getOid().getToken());
System.out.println(request.getAttribute(nameAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Story:1195
Urgent! Filter by owner
******************/

Querying with Sorting
This example shows how to use the getOrderBy method of the Query object to sort the results. This query will retrieve
all Story assets sorted by increasing Estimate:

IAssetType storyType = services.getMeta().getAssetType("Story");
Query query = new Query(storyType);
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
IAttributeDefinition estimateAttribute = storyType.getAttributeDefinition("Estimate");
query.getSelection().add(nameAttribute);
query.getSelection().add(estimateAttribute);
query.getOrderBy().minorSort(estimateAttribute, Order.Ascending);
QueryResult result = services.retrieve(query);

for (Asset story : result.getAssets()) {

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

20

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

System.out.println(story.getOid().getToken());
System.out.println(story.getAttribute(nameAttribute).getValue());
System.out.println(story.getAttribute(estimateAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Story:1073
Add Order Line
1
Story:1068
Update Member
2 ...
******************/

There are two methods you can call on the OrderBy object to sort your results: minorSort and majorSort. If you are
sorting by only one field, it does not matter which one you use. If you want to sort by multiple fields, you need to call
either minorSort or majorSort multiple times. The difference is that each time you call minorSort, the parameter will be
added to the end of the OrderBy statement. Each time you call majorSort, the parameter will be inserted at the
beginning of the OrderBy statement.

Querying with Paging
This example shows how to retrieve a "page" of query results by using the getPaging method of the Query object. This
query will retrieve the first 3 Story assets:

IAssetType storyType = services.getMeta().getAssetType("Story");
Query query = new Query(storyType);
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
IAttributeDefinition estimateAttribute = storyType.getAttributeDefinition("Estimate");
query.getSelection().add(nameAttribute);
query.getSelection().add(estimateAttribute);
query.getPaging().setPageSize(3);
query.getPaging().setStart(0);
QueryResult result = services.retrieve(query);

for (Asset story : result.getAssets()) {
System.out.println(story.getOid().getToken());
System.out.println(story.getAttribute(nameAttribute).getValue());
System.out.println(story.getAttribute(estimateAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Story:1063
Logon
2

Story:1064
Add Customer Details
2

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

21

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

Story:1065
Add Customer Header
3
******************/

The setPageSize method shown asks for 3 items, and the setStart method indicates to start at 0. The next 3 items can
be retrieve with setPageSize=3, setStart=3.

Querying with Downcasting
This example shows how to use a downcast to select the Name attribute of all Test assets associated with a
specific Story:

Oid assetOID = services.getOid("Story:7608");
IAssetType assetType = services.getMeta().getAssetType("Story");
Query query = new Query(assetOID);
IAttributeDefinition nameAttribute = assetType.getAttributeDefinition("Children:Test.Name");
query.getSelection().add(nameAttribute);
QueryResult result = services.retrieve(query);

for (Object value : result.getAssets()[0].getAttribute(nameAttribute).getValues()) {
System.out.println(value);

}

/***** OUTPUT *****
Test #1
Test #2
******************/

Querying with Functions
This example shows how to use a function to sum the DetailEstimate values for all Task assets associated with a
specific Story:

Oid assetOID = services.getOid("Story:7608");
IAssetType assetType = services.getMeta().getAssetType("Story");
Query query = new Query(assetOID);
IAttributeDefinition sumAttribute = assetType.getAttributeDefinition("Children:Task.DetailEstimate.@Sum");
query.getSelection().add(sumAttribute);
QueryResult result = services.retrieve(query);

System.out.println(result.getAssets()[0].getAttribute(sumAttribute).getValue());

/***** OUTPUT *****
20.0
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

22

https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Downcast
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Assets

Querying Asset History
It is often useful to query VersionOne for the history of a particular asset. This can be useful for reporting on how an
asset has changed over time, or to see who has changed it and the moment the change occurred. Querying for asset
history is similar to querying for current asset data, the difference being that you set the optional Historical parameter of
the Query object to "true".

Querying the History of a Single Asset
This example shows how to retrieve the history of the Member asset with ID 1000:

IAssetType memberType = services.getMeta().getAssetType("Member");
Query query = new Query(memberType, true);
IAttributeDefinition idAttribute = memberType.getAttributeDefinition("ID");
IAttributeDefinition changeDateAttribute = memberType.getAttributeDefinition("ChangeDate");
IAttributeDefinition emailAttribute = memberType.getAttributeDefinition("Email");
query.getSelection().add(changeDateAttribute);
query.getSelection().add(emailAttribute);
FilterTerm idTerm = new FilterTerm(idAttribute);
idTerm.equal("Member:1000");
query.setFilter(idTerm);
QueryResult result = services.retrieve(query);

for (Asset member : result.getAssets()) {
System.out.println(member.getOid().getToken());
System.out.println(member.getAttribute(changeDateAttribute).getValue());
System.out.println(member.getAttribute(emailAttribute).getValue());
System.out.println();

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Asset_History
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

23

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Asset_History

}

/***** OUTPUT *****
Member:1000:105
4/2/2015 1:22:03 PM
andre.agile@company.com

Member:1000:101
3/29/2015 4:10:29 PM
andre@company.net
******************/

As demonstrated in the example above, to create a history query, you provide a boolean value of "true" to the second
argument of the Query object constructor.

Querying the History of Multiple Assets
This example shows how to retrieve history for all Member assets:

IAssetType memberType = services.getMeta().getAssetType("Member");
Query query = new Query(memberType, true);
IAttributeDefinition changeDateAttribute = memberType.getAttributeDefinition("ChangeDate");
IAttributeDefinition emailAttribute = memberType.getAttributeDefinition("Email");
query.getSelection().add(changeDateAttribute);
query.getSelection().add(emailAttribute);
QueryResult result = services.retrieve(query);

for (Asset member : result.getAssets()) {
System.out.println(member.getOid().getToken());
System.out.println(member.getAttribute(changeDateAttribute).getValue());
System.out.println(member.getAttribute(emailAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Member:1010:106
4/2/2015 3:27:23 PM
tammy.coder@company.com

Member:1000:105
4/2/2015 1:22:03 PM
andre.agile@company.com

Member:1000:101
3/29/2015 4:10:29 PM
andre@company.net
******************/

Again, the response is a list of historical assets. There will be multiple Asset objects returned for an asset that has
changed previously.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Asset_History
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

24

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Asset_History

Querying Asset History "as of" a Specific Point in Time
This example shows how to use the setAsOf method of the Query object to retrieve data as it existed at some point in
time. This query finds the version of each Story asset as it existed seven days ago:

IAssetType storyType = services.getMeta().getAssetType("Story");
Query query = new Query(storyType, true);
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
IAttributeDefinition estimateAttribute = storyType.getAttributeDefinition("Estimate");
query.getSelection().add(nameAttribute);
query.getSelection().add(estimateAttribute);

Calendar c = Calendar.getInstance();
c.add(Calendar.DAY_OF_MONTH, -7);
query.setAsOf(c.getTime());

QueryResult result = services.retrieve(query);

for (Asset story : result.getAssets()) {
System.out.println(story.getOid().getToken());
System.out.println(story.getAttribute(nameAttribute).getValue());
System.out.println(story.getAttribute(estimateAttribute).getValue());
System.out.println();

}

/***** OUTPUT *****
Story:1063
Logon
3

Story:1064
Add Customer Details
1

Story:1065
Add Customer Header
3
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Asset_History
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

25

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Asset_History

Querying Configurations and Localizations
In addition to working with VersionOne assets, the Java SDK provides read-only access to a subset of system
configurations and localizations to allow for client-side data validation.

For system configurations, settings for Effort Tracking, Story Tracking Level, Defect Tracking Level are available so that
entry of Effort, Detail Estimate, and ToDo can be done consistently with the way VersionOne is configured.

For system localizations, you can look up the value used within the VersionOne user interface based on the asset's or
attribute's system name.

Prior to querying configurations and localizations in VersionOne, you must first instantiate a V1Connector object:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

IServices services = new Services(connector);

In versions of the SDK prior to the 15.0.0.0 release, you would also have to instantiate a connector for
the MetaModel object. However, starting with the 15.0.0.0 release, that is no longer necessary.
The MetaModel object is now available from the getMeta method of the Services object. For more
advanced Services constructor overloads, see the Creating a Services Object topic.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Configurations_and_Localizations
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

26

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Asset
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Configurations_and_Localizations

Querying System Configurations
While working with VersionOne assets requires the use of the Services object, accessing the system configurations
requires using the V1Configuration object. This example shows how to get the available system settings using the
V1Configuration object:

V1Configuration configuration = new V1Configuration(connector);

System.out.println(String.format("Effort tracking level: %s", configuration.isEffortTracking()));
System.out.println(String.format("Story tracking level: %s", configuration.getStoryTrackingLevel()));
System.out.println(String.format("Defect tracking level: %s", configuration.getDefectTrackingLevel()));
System.out.println(String.format("Capacity planning: %s", configuration.getCapacityPlanning()));
System.out.println(String.format("Maximum attachment size: %s", configuration.getMaxAttachmentSize()));

/***** OUTPUT *****
Effort tracking level: True
Story tracking level: Mix
Defect tracking level: Mix
Capacity planning: ByMemberByTeam
Maximum attachment size: 4194304
******************/

Detail Estimate, ToDo and Effort can be entered for Stories and Defects, or for their child Tasks and Tests, depending
on how the system is configured. The StoryTrackingLevel and DefectTrackingLevel properties indicate where input of
Detail Estimate, ToDo and Effort are taken.

A value of "True" indicates that Detail Estimate, ToDo, and Effort input is accepted at the PrimaryWorkitem level only. A
value of "False" indicates that Detail Estimate, ToDo, and Effort input is accepted at the Task/Test level only. A value of
"Mix" indicates that Detail Estimate, ToDo, and Effort input is accepted at both the PrimaryWorkitem and Task/Test
level.

Querying System Localizations
Accessing system localizations is accomplished via the Services object using its getLocalization method, and there
are three approaches that it supports.

The first approach is used for getting the localized name of an asset based on its system name:

System.out.println(String.format("Timebox name: %s", services.getLocalization("Timebox")));
System.out.println(String.format("Scope name: %s", services.getLocalization("Scope")));
System.out.println(String.format("Epic name: %s", services.getLocalization("Epic")));
System.out.println(String.format("Story name: %s", services.getLocalization("Story")));
System.out.println(String.format("Defect name: %s", services.getLocalization("Defect")));

/***** OUTPUT *****
Timebox: Iteration
Scope: Project
Epic: Portfolio Item

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Configurations_and_Localizations
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

27

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Configurations_and_Localizations

Story: Story
Defect: Defect
******************/

The second approach is used for getting the localized value of a single attribute based on its attribute definition:

IAttributeDefinition scopeNameAttribute = services.getAttributeDefinition("Scope.Name");
IAttributeDefinition timeboxNameAttribute = services.getAttributeDefinition("Timebox.Name");

System.out.println(String.format("Scope name attribute: %s", services.getLocalization(timeboxNameAttribute)));
System.out.println(String.format("Timebox name attribute: %s", services.getLocalization(scopeNameAttribute)));

/***** OUTPUT *****
Scope name attribute: Title
Timebox name attribute: Title
******************/

The third approach is used for getting the localized values of multiple attributes based on their attribute definitions:

IAttributeDefinition nameAttribute = services.getAttributeDefinition("Story.Name");
IAttributeDefinition estimateAttribute = services.getAttributeDefinition("Story.Estimate");

ArrayList<IAttributeDefinition> attributes = new ArrayList<IAttributeDefinition>(Arrays.asList(nameAttribute,
estimateAttribute));
Map<String, String> localizations = services.getLocalization(attributes);

System.out.println(String.format("Story name attribute: %s", localizations.get(nameAttribute.getToken())));
System.out.println(String.format("Story estimate attribute: %s", localizations.get(estimateAttribute.getToken())));

/***** OUTPUT *****
Story name attribute: Title
Story estimate attribute: Estimate Pts.
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Configurations_and_Localizations
Updated: Wed, 28 Dec 2016 16:19:10 GMT

Powered by

28

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Querying_Configurations_and_Localizations

Updating Assets
Updating assets through the Java SDK involves calling the Save method of the Services object. The process is that you
first have to query for the asset to update, make the update in memory, then save the asset back to VersionOne.

Prior to updating an asset in VersionOne, you must first instantiate a V1Connector and Services object:

V1Connector connector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.build();

IServices services = new Services(connector);

In versions of the SDK prior to the 15.0.0.0 release, you would also have to instantiate a connector for
the MetaModel object. However, starting with the 15.0.0.0 release, that is no longer necessary.
The MetaModel object is now available from the getMeta method of the Services object. For more
advanced Services constructor overloads, see the Creating a Services Object topic.

Updating a Scalar Value Attribute
This example shows that updating a scalar attribute on an asset is accomplished by calling the setAttributeValue
method on an asset, specifying the attribute definition of the attribute you wish to change and the new scalar value. This
example updates the Name attribute on the Story with ID 7617:

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Updating_Assets
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

29

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Asset
https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/Attribute
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Updating_Assets

Oid storyId = services.getOid("Story:7617");

Query query = new Query(storyId);
IAssetType storyType = services.getMeta().getAssetType("Story");
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
query.getSelection().add(nameAttribute);
QueryResult result = services.retrieve(query);
Asset story = result.getAssets()[0];
String oldName = story.getAttribute(nameAttribute).getValue().toString();
story.setAttributeValue(nameAttribute, "New Name");
services.save(story);

System.out.println(story.getOid().getToken());
System.out.println(oldName);
System.out.println(story.getAttribute(nameAttribute).getValue());

/***** OUTPUT *****
Story:7617:9244
My New Story
New Name
******************/

Updating a Single-Value Relation Attribute
This example shows that updating a single-value relation is accomplished by calling the setAttributeValue method on
an asset, specifying the attribute definition of the attribute you wish to change and the ID for the new relation. This
example updates the source of the Story with ID 7617:

Oid storyId = services.getOid("Story:7617");

Query query = new Query(storyId);
IAssetType storyType = services.getMeta().getAssetType("Story");
IAttributeDefinition sourceAttribute = storyType.getAttributeDefinition("Source");
query.getSelection().add(sourceAttribute);
QueryResult result = services.retrieve(query);
Asset story = result.getAssets()[0];
String oldSource = story.getAttribute(sourceAttribute).getValue().toString();
story.setAttributeValue(sourceAttribute, "StorySource:149");
services.save(story);

System.out.println(story.getOid().getToken());
System.out.println(oldSource);
System.out.println(story.getAttribute(sourceAttribute).getValue());

/***** OUTPUT *****
Story:7617:9245
NULL
StorySource:149
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Updating_Assets
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

30

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Updating_Assets

Updating a Multi-Value Relation Attribute
This example shows that updating a multi-value relation is accomplished by calling either the removeAttributeValue or
addAttributeValue methods on an asset, specifying the attribute definition of the attribute you wish to change and the
ID of the relation you wish to add or remove. This example updates one Member and removes another Member from the
Story with ID 7617:

Oid storyId = services.getOid("Story:7617");

Query query = new Query(storyId);
IAssetType storyType = services.getMeta().getAssetType("Story");
IAttributeDefinition ownersAttribute = storyType.getAttributeDefinition("Owners");
query.getSelection().add(ownersAttribute);
QueryResult result = services.retrieve(query);
Asset story = result.getAssets()[0];

List<Object> oldOwners = new ArrayList<Object>();
oldOwners.addAll(Arrays.asList(story.getAttribute(ownersAttribute).getValues()));
story.removeAttributeValue(ownersAttribute, "Member:20");
story.addAttributeValue(ownersAttribute, "Member:2024");
services.save(story);
System.out.println(story.getOid().getToken());
Iterator<Object> iter = oldOwners.iterator();

while (iter.hasNext()) {
Oid oid = (Oid) iter.next();
System.out.println(oid.getToken());

}

for (Object o : story.getAttribute(ownersAttribute).getValues()) {
Oid oid = (Oid) o;
System.out.println(oid.getToken());

}

/***** OUTPUT *****
Story:7617:9247
Member:20
Member:2024
******************/

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Updating_Assets
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

31

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Updating_Assets

Working with Attachments and Images
Working with attachments and images via the Java SDK is slightly different from other types of assets in that it involves
working with specialized endpoints. These specialized endpoints are used for uploading and downloading the
attachment and image data, which in most cases is in a binary format. Adding attachment and images to a VersionOne
asset is a two step process:

Creating an Attachment
Prior to the 15.1.0 release of the SDK, creating an attachment for an asset involved first creating an Attachment asset
then using the Attachments object to upload the attachment data. Starting with the 15.1.0 release, a much
simpler saveAttachment method is available on the Services object. With the saveAttachment method, you no longer
have to create a special V1Connector to the attachment.img endpoint to upload attachments to VersionOne.

Creating an Attachment Using the Services Object

To create an attachment and associate it with an asset in VersionOne, call the saveAttachment method of
the Services object passing in the path and name of the file, the asset to associate with, and the name to use for the
attachment. This example first creates a new story then adds the attachment to it:

Oid projectId = services.getOid("Scope:0");
IAssetType storyType = services.getMeta().getAssetType("Story");
Asset newStory = services.createNew(storyType, projectId);
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
newStory.setAttributeValue(nameAttribute, "Story with Attachment");
services.save(newStory);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

32

https://community.versionone.com/
https://community.versionone.com/
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

String file = "C:\\Temp\\versionone.jpg";
services.saveAttachment(file, newStory, "Attachment for " + newStory.getOid().toString());

Creating an Attachment Using the Attachment Object

To create an attachment and associate it with an asset in VersionOne, you must first create an Attachment asset and
retain its OID value which will be used to upload the attachment. This example creates an attachment asset for the Story
with ID 1317.

Oid storyOid = services.getOid("Story:1317");
String file = "C:\\Temp\\versionone.png";
String mimeType = MimeType.resolve(file);

IAssetType attachmentType = services.getMeta().getAssetType("Attachment");
IAttributeDefinition attachmentAssetDef = attachmentType.getAttributeDefinition("Asset");
IAttributeDefinition attachmentContent = attachmentType.getAttributeDefinition("Content");
IAttributeDefinition attachmentContentType = attachmentType.getAttributeDefinition("ContentType");
IAttributeDefinition attachmentFileName = attachmentType.getAttributeDefinition("Filename");
IAttributeDefinition attachmentName = attachmentType.getAttributeDefinition("Name");
Asset attachment = services.createNew(attachmentType, Oid.Null);
attachment.setAttributeValue(attachmentName, "Attachment for " + storyOid.getMomentless());
attachment.setAttributeValue(attachmentFileName, file);
attachment.setAttributeValue(attachmentContentType, mimeType);
attachment.setAttributeValue(attachmentContent, "");
attachment.setAttributeValue(attachmentAssetDef, storyOid);
services.save(attachment);

Oid attachmentOid = attachment.getOid()

Note the use of the MimeType helper object. The resolve method of this object is used to determine the content type to
use for the attachment asset. Also note that an empty string is passed for the Content attribute.

Once you've created the attachment asset and have its OID, you can then use the Attachments object to upload the
binary data of the attachment. To use the Attachments object, you'll need to create a new V1Connector object, using
the useEndpoint method to set the attachment.img endpoint. You then use the java.io package to read the binary data
of the attachment, and then methods of the attachment class to write the stream.

V1Connector attachmentConnector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.useEndpoint("attachment.img/")
.build();

IAttachments attachments = new Attachments(attachmentConnector);

FileInputStream inStream = new FileInputStream(file);
OutputStream output = attachments.getWriter(attachmentOid.getKey().toString(), mimeType);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

33

https://community.versionone.com/VersionOne_Connect/Developer_Library/Getting_Started/Platform_Concepts/OID_Token
https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

byte[] buffer = new byte[inStream.available() + 1];
while (true) {

int read = inStream.read(buffer, 0, buffer.length);
if (read <= 0)

break;
output.write(buffer, 0, read);

}

attachments.setWriter(attachmentOid.getKey().toString());
inStream.close();

Note that as of the 15.1.0 release of the SDK, both the useEndpoint method and the Attachments object have been
marked for deprecation.

Querying an Attachment
Prior to the 15.1.0 release of the SDK, querying an attachment for an asset involved using the getReadStream method
of the Attachments object to download the attachment data. Starting with the 15.1.0.0 release, a much
simpler getAttachment method is available on the Services object. With the getAttachment method, you no longer
have to create a special V1Connector to the attachment.img endpoint to download attachments from VersionOne.

Querying an Attachment Using the Services Object

Getting an attachment from VersionOne involves getting the OID of the attachment, then using
the getAttachment method of the Services object. In this example, a query is used to get all the attachments
associated with Story ID 6052, and then write each attachment as a file:

Oid assetOid = services.getOid("Story:1181");

IAssetType attachmentType = services.getMeta().getAssetType("Attachment");
Query query = new Query(attachmentType);
IAttributeDefinition filenameAttribute = attachmentType.getAttributeDefinition("Filename");
IAttributeDefinition assetAttribute = attachmentType.getAttributeDefinition("Asset");
query.getSelection().add(filenameAttribute);
query.getSelection().add(assetAttribute);

FilterTerm term = new FilterTerm(assetAttribute);
term.equal(assetOid.getMomentless());
query.setFilter(term);
QueryResult result = services.retrieve(query);

for (Asset attachment : result.getAssets()) {

String fileName = attachment.getAttribute(filenameAttribute).getValue().toString();
File file = new File(fileName);
InputStream inStream = _services.getAttachment(attachment.getOid());

if (null != inStream) {

FileOutputStream outStream = new FileOutputStream(file);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

34

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

byte[] buf = new byte[1024];
int len;

while ((len = inStream.read(buf)) > 0) {
try {

outStream.write(buf, 0, len);
} catch (IndexOutOfBoundsException e) {

System.out.println("\nIndexOutOfBoundsException occurred, please try again........\n");
}

}

outStream.close();
inStream.close();

}

System.out.println(fileName);
}

/***** OUTPUT *****
Test Image Attachment.png
Test Document Attachment.pdf
******************/

Querying an Attachment Using the Attachment Object

Getting an attachment from VersionOne involves getting the OID of the attachment, then using the getReader method
of the Attachments object. In this example, a query is used to get all the attachments associated with Story ID 1317,
and then write the attachments as files to the C:\Temp directory:

Oid assetOid = services.getOid("Story:1317");

V1Connector attachmentConnector = V1Connector
.withInstanceUrl("<Server Base URI>")
.withUserAgentHeader("AppName", "1.0")
.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")
.useEndpoint("attachment.img/")
.build();

IAttachments attachments = new Attachments(attachmentConnector);

IAssetType attachmentType = services.getMeta().getAssetType("Attachment");
Query query = new Query(attachmentType);
IAttributeDefinition filenameAttribute = attachmentType.getAttributeDefinition("Filename");
IAttributeDefinition assetAttribute = attachmentType.getAttributeDefinition("Asset");
query.getSelection().add(filenameAttribute);
query.getSelection().add(assetAttribute);

FilterTerm term = new FilterTerm(assetAttribute);
term.equal(assetOid.getMomentless());
query.setFilter(term);
QueryResult result = services.retrieve(query);

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

35

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

String filePath = "C:\\Temp\\";
for (Asset attachment : result.getAssets()) {

String fileName = attachment.getAttribute(filenameAttribute).getValue().toString();
String attachmentKey = attachment.getOid().getKey().toString();
File file = new File(filePath + "v1_" + fileName);

InputStream inStream = attachments.getReader(attachmentKey);

if (null != inStream) {
OutputStream outStream = new FileOutputStream(file);
byte buf[] = new byte[1024];
int len;
while ((len = inStream.read(buf)) > 0) {

outStream.write(buf, 0, len);
}
outStream.close();
inStream.close();

}
System.out.println(fileName);

}

/***** OUTPUT *****
Test Image Attachment.png
Test Document Attachment.pdf
******************/

Note that as of the 15.1.0 release of the SDK, both the useEndpoint method and the Attachments object have been
marked for deprecation.

Deleting an Attachment
Deleting an attachment is the same process as used for any other VersionOne asset, you use the getOperation method
to get the operation to execute, then call the executeOperation method of the Services object, passing in the operation
and the OID of the asset:

IOperation deleteOperation = services.getMeta().getOperation("Attachment.Delete");
services.executeOperation(deleteOperation, services.getOid("Attachment:6640"));

Adding an Embedded Image
Prior to the 15.1.0 release of the SDK, creating an embedded image for an asset involved first creating an
EmbeddedImage asset then using the Attachments object to upload the embedded image data. Starting with the
15.1.0 release, a much simpler saveEmbeddedImage method is available on the Services object. With
the saveEmbeddedImage method, you no longer have to create a special V1Connector to the embedded.img endpoint
to upload embedded images to VersionOne.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

36

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

Adding an Embedded Image Using the Services Object

Adding an embedded image using the Services object involves calling the SaveEmbeddedImage method and
specifying the path and name to the image to embed, and the asset that it should be associated with.

In this example, a new story is created, an embedded image is associated with it, then the story's description field is
modified to to include the embedded image:

//Create a new story.
IAssetType storyType = services.getMeta().getAssetType("Story");
Asset newStory = services.createNew(storyType, services.getOid("Scope:0"));
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
IAttributeDefinition descriptionAttribute = storyType.getAttributeDefinition("Description");
String name = "Story with an embedded image";
newStory.setAttributeValue(nameAttribute, name);
services.save(newStory);

//Add the embedded image to the story.
String file = "C:\\Temp\\versionone.jpg";
Oid embeddedImageOid = services.saveEmbeddedImage(file, newStory);
String embeddedImageTag = "<img src="+"embedded.img/" + embeddedImageOid.getKey() + " alt=\"\" data-
oid=" + embeddedImageOid.getMomentless() + " />";
newStory.setAttributeValue(descriptionAttribute, embeddedImageTag);
services.save(newStory);

Adding an Embedded Image Using the Attachments Object

An embedded image is an image that you add to the Description attribute of an asset, and adding an embedded image
follows a similar process as that of an attachment, except that it makes use of the embedded.img endpoint, and involves
using the EmbeddedImage asset and adding a bit of HTML.

In the following example, a story is created in Scope:0 and an image file is read from the C:\Temp directory and added
as an embedded image to the description of the story:

//Create a new story.
IAssetType storyType = services.getMeta().getAssetType("Story");
Asset newStory = services.createNew(storyType, services.getOid("Scope:0"));
IAttributeDefinition nameAttribute = storyType.getAttributeDefinition("Name");
IAttributeDefinition descriptionAttribute = storyType.getAttributeDefinition("Description");
String name = "Story with an embedded image";
newStory.setAttributeValue(nameAttribute, name);
services.save(newStory);

//Create an embedded image asset.
String fileName = "versionone.png";
String filePath = "C:\\Temp\\";
String mimeType = MimeType.resolve(fileName);

IAssetType embeddedImageType = services.getMeta().getAssetType("EmbeddedImage");

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

37

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

Asset newEmbeddedImage = services.createNew(embeddedImageType, Oid.Null);
IAttributeDefinition assetAttribute = embeddedImageType.getAttributeDefinition("Asset");
IAttributeDefinition contentAttribute = embeddedImageType.getAttributeDefinition("Content");
IAttributeDefinition contentTypeAttribute = embeddedImageType.getAttributeDefinition("ContentType");
newEmbeddedImage.setAttributeValue(assetAttribute, newStory.getOid());
newEmbeddedImage.setAttributeValue(contentTypeAttribute, mimeType);
newEmbeddedImage.setAttributeValue(contentAttribute, "");
services.save(newEmbeddedImage);
String key = newEmbeddedImage.getOid().getKey().toString();

//Save the embedded image file data.
V1Connector attachmentConnector = V1Connector

.withInstanceUrl("<Server Base URI>")

.withUserAgentHeader("AppName", "1.0")

.withAccessToken("1.rWM8lKLk+PnyFxkEWVX5Kl2u6Jk=")

.useEndpoint("embedded.img/")

.build();

IAttachments attachments = new Attachments(attachmentConnector);

FileInputStream inStream = new FileInputStream(filePath + fileName);
OutputStream output = attachments.getWriter(key, mimeType);
byte[] buffer = new byte[inStream.available() + 1];
while (true) {

int read = inStream.read(buffer, 0, buffer.length);
if (read <= 0)

break;
output.write(buffer, 0, read);

}

attachments.setWriter(key);
inStream.close();

//Add the embedded image to the story.
newStory.setAttributeValue(descriptionAttribute, "<img src="+"embedded.img/" + key+ " alt=\"\" data-oid=" +
newEmbeddedImage.getOid().getMomentless()+" />");
services.save(newStory);

Note that as of the 15.1.0.0 release of the SDK, both the useEndpoint method and the Attachments object have been
marked for deprecation.

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images
Updated: Wed, 28 Dec 2016 16:19:11 GMT

Powered by

38

https://community.versionone.com/VersionOne_Connect/Developer_Library/Get_an_SDK/Java_SDK/Working_with_Attachments_and_Images

	Java SDK
	Overview
	System Requirements
	Getting the Java SDK
	Setting a reference using Maven
	Setting a reference manually

	Using the Java SDK
	Getting Help
	Creating Assets
	Creating a New Asset
	Creating a Connection
	Connecting with Basic Authentication
	Connecting with Windows Integrated Authentication
	Connecting with Access Tokens
	Connecting with OAuth2 Tokens
	Connecting with a Proxy
	Creating a Services Object
	Creating a V1Connector Instance
	Services(V1Connector v1Connector)
	Services(V1Connector connector, boolean preLoadMeta)
	Services(V1Connector connector, IMetaModel metaModel)
	Executing Operations
	Closing an Asset
	Reopening an Asset
	Deleting an Asset
	Executing Pass-Through Queries
	Executing a JSON Query
	Executing a YAML Query
	Querying Assets
	Quick Start
	Querying a Single Asset
	Querying an Asset for Specific Attributes
	Query for a List of Assets
	Querying with Filtering on a Single Attribute
	Querying with Filtering on Multiple Attributes
	Querying with Searching
	Querying with Sorting
	Querying with Paging
	Querying with Downcasting
	Querying with Functions
	Querying Asset History
	Querying the History of a Single Asset
	Querying the History of Multiple Assets
	Querying Asset History "as of" a Specific Point in Time
	Querying Configurations and Localizations
	Querying System Configurations
	Querying System Localizations
	Updating Assets
	Updating a Scalar Value Attribute
	Updating a Single-Value Relation Attribute
	Updating a Multi-Value Relation Attribute
	Working with Attachments and Images
	Creating an Attachment
	Creating an Attachment Using the Services Object
	Creating an Attachment Using the Attachment Object

	Querying an Attachment
	Querying an Attachment Using the Services Object
	Querying an Attachment Using the Attachment Object

	Deleting an Attachment
	Adding an Embedded Image
	Adding an Embedded Image Using the Services Object
	Adding an Embedded Image Using the Attachments Object

