
Juzu Web Framework

0.4.3
Tutorial

Julien Viet

eXo Platform
Copyright © 2011 eXo Platform SAS

Table of Contents

Preface

1. Quickstart
1.1. Deploy the applications
1.2. Interacting with the application

2. Template overwiew

3. Dependency Injection

4. Views

5. Actions

6. Type safe templating

7. Wrap up

Preface
Juzu is a web framework based on MVC concepts for developing Portlet applications. Juzu is an
open source project developed on GitHub licensed under the license.project LGPL 2.1

This tutorial will make you familliar with Juzu, to reach our objective we will develop a weather
application in several steps, each step introducing a new feature to gradually improve the
application.

https://github.com/juzu/juzu
http://www.gnu.org/licenses/lgpl-2.1.html

Page 4 of 15

1
Quickstart

1.1. Deploy the applications
Before diving in the technical part of this tutorial, we need to study how to deploy the examples and
how to use them. In the package you downloaded you will find a war file adapted to your portal
server in the directory:/tutorial

 for the GateIn portal serverjuzu-tutorial-examples-gatein.war

 for the Liferay portal serverjuzu-tutorial-examples-liferay.war

The main reason we have two servers is that the jars are not exactly the same, each is adapted to
the portal server you will use. When you deploy the applications, the deployment process will print
information in the console, similar to:

INFO: Deploying web application archive juzu-tutorial-gatein.war
[Weather4Portlet] Building application
[Weather4Portlet] Using injection org.juzu.impl.spi.inject.cdi.CDIBootstrap
[Weather4Portlet] Starting Weather4Application
[Weather4Portlet] Dev mode scanner monitoring /java/gatein/webapps/juzu-tutorial-gatein/WEB-INF/src
[Weather3Portlet] Building application
[Weather3Portlet] Using injection org.juzu.impl.spi.inject.spring.SpringBootstrap
[Weather3Portlet] Starting Weather3Application
[Weather3Portlet] Dev mode scanner monitoring /java/gatein/webapps/juzu-tutorial-gatein/WEB-INF/src
[Weather5Portlet] Building application
[Weather5Portlet] Using injection org.juzu.impl.spi.inject.cdi.CDIBootstrap
[Weather5Portlet] Starting Weather5Application
[Weather5Portlet] Dev mode scanner monitoring /java/gatein/webapps/juzu-tutorial-gatein/WEB-INF/src
[Weather2Portlet] Building application
[Weather2Portlet] Using injection org.juzu.impl.spi.inject.cdi.CDIBootstrap
[Weather2Portlet] Starting Weather2Application
[Weather2Portlet] Dev mode scanner monitoring /java/gatein/webapps/juzu-tutorial-gatein/WEB-INF/src
[Weather1Portlet] Building application
[Weather1Portlet] Using injection org.juzu.impl.spi.inject.cdi.CDIBootstrap
[Weather1Portlet] Starting Weather1Application
[Weather1Portlet] Dev mode scanner monitoring /java/gatein/webapps/juzu-tutorial-gatein/WEB-INF/src

As we can notice, there are 5 applications deployed, one for each of the topic of this tutorial

Weather1Application: Chapter 1, Quickstart

Page 5 of 15

Weather2Application: Chapter 2, Template overwiew

Weather3Application: Chapter 3, Dependency Injection

Weather3Application: Chapter 4, Views

Weather3Application: Chapter 5, Actions

1.2. Interacting with the application
In this tutorial, Juzu applications are deployed in the mode. This runtime mode allows you to dev
modify the source code of the application, Juzu will pick up the modifications and update the
running application almost instantanesouly.

The source code for the five applications is in the directory of the war file, each/WEB-INF/src

application has its own package, for instance the quickstart application uses the package
. The first version of the application shows the most basic Juzuexamples.tutorial.weather1

application. Our application is declared in the packageexamples.tutorial.weather1

package annotated with the annotation This annotation declares a Juzu@Application

application and does not require any mandatory value. Like classes, methods or fields, Java
packages can be annotated, such packages declaration are represented by a special file named

.package-info.java

Usually an application is made of controllers and templates, in this example, the JavaWeather

class contains a method annotated with the annotation, which turns the class into@View Weather

a Juzu controller. The controller method is the name of the default method that Juzu willindex()

call.

 @View
 index()public void
 {
 index.render();
 }

Methods annotated by have the unique purpose of providing markup, they are called .@View view
In our case, the method delegates the rendering to the template. The template isindex.gtmpl

injected in the controller thanks to the annotation and the @Inject @Path("index.gtmpl")

annotation.

 @Inject
 @Path("index.gtmpl")
 Template index;

By default templates are located in the package of the application, in our case the templates

 package. The annotation specifies theexamples.tutorial.weather1.templates @Path

path of the template in this package. The templates are located in the same source tree than the
java classes because the files must be available for the Java compiler.

Page 6 of 15

2
Template overwiew

Now we will improve our application by exploring a bit the templating engine. We will show a quick
overview of Juzu templating system. Templates are essentially made of static part (usually
markup) and dynamic parts. In this section we will focus on explaining the use of dynamic
expression in a template.

The application shows how a view can provide variable input for a dynamic template with
parameters. Our application has a view controller and a template, but now the template contains
the expression that makes it dynamic.${ }

The weather temperature in ${location} is ${temperature} degrees.

Like before the template is used in the view controller but now we use a containing the Map

 and parameters.location temperature

 @View
 index()public void
 {
 Map<String, Object> parameters = HashMap<String, Object>();new
 parameters.put(,);"location" "Marseille"
 parameters.put(,);"temperature" "20"
 index.render(parameters);
 }

During the template rendering, the and expressions are resolved to thelocation temperature

value provided by the view controller. When a template is rendered, an optional map can be
provided, this map will be available during the rendering of the template for resolving expression.

Page 7 of 15

3
Dependency Injection

The next step is to make our application obtain real data instead of the hardcoded values we used
in the previous section. For this matter we use a remote service that we encapsulate into the

.WeatherService

public WeatherServiceclass
{

 XPathExpression xpath;private final

 WeatherService() XPathExceptionpublic throws
 {
 xpath = XPathFactory.newInstance().newXPath().compile();"//temp_c/@data"
 }

 String getTemperature(String location)public
 {
 try
 {
 String url = + location;"http://www.google.com/ig/api?weather="
 InputSource src = InputSource(url);new
 src.setEncoding();"ISO-8859-1"
 xpath.evaluate(src);return
 }
 (XPathExpressionException e)catch
 {
 ;return "unavailable"
 }
 }
}

Juzu uses dependency injection to interact with a service layer. The , also knowns as JSR-330
, defines an API for dependency injection. The is injected in the@Inject WeatherService

controller with the field annotated with the annotation:weatherService @Inject

 @Inject
 WeatherService weatherService;

This service is then simply used into our controller method:index()

http://jcp.org/en/jsr/detail?id=330

Page 8 of 15

 @View
 index()public void
 {
 Map<String, Object> parameters = HashMap<String, Object>();new
 parameters.put(,);"location" "Marseille"
 parameters.put(, weatherService.getTemperature());"temperature" "marseille"
 index.render(parameters);
 }

As we can see, Juzu relies on the portable annotation to declare sinjections. Injection is@Inject

performed by the dependency injection container. At the moment the following containers are
supported:

Spring Framework

JBoss Weld

There is a preliminary support for , but it is not yet available. In the future moreGoogle Guice 3.0
container support could be achieved.

By default it uses the container, if you want instead to use container instead theWeld Spring
configuration is done by a portlet init param defined in the deployment descriptor of the portlet:

<init-param>
 juzu.inject<name> </name>
 spring<value> </value>
</init-param>

In the case of , the file file is needed, it contains the service declarations forSpring spring.xml

the Spring container.

Juzu provides more advanced dependency injection, in particular it uses the and Qualifier

 features defined by the JSR-330 specification that will be studied later.Scope

http://www.springsource.org/
http://seamframework.org/Weld
http://code.google.com/p/google-guice/wiki/Guice30

Page 9 of 15

4
Views

Until now we have seen a basic view controller, in this section we will study more in depth view
controllers. A view controller is invoked by Juzu when the application needs to be rendered, which
can happen anytime during the lifecycle of an application.

This version has still the view controller, but now it has also an overloaded index()

 method that accept a argument as a view parameter.index(String location) location

 @View
 index(String location)public void
 {
 Map<String, Object> parameters = HashMap<String, Object>();new
 parameters.put(, location);"location"
 parameters.put(, weatherService.getTemperature());"temperature" "marseille"
 index.render(parameters);
 }

View parameters are bound to the current navigation of the application and their value are
managed by the framework. At this point it is normal to wonder how a view parameter value can
change. Let's have a closer look at the application template.index.gtmpl

The weather temperature in ${location} is ${temperature} degrees.
Marseille
Paris

The template now has two links that change the view parameters when they are processed. The
links are created by a special syntax that references the view method, for instance the script
fragment generates an url that updates the view@{index(location = 'paris')} location

parameter to the value when it is processed.paris

The initial controller method is still there but now it simply invokes the index() index(String

 controller with a predefined value.location)

Page 10 of 15

 @View
 index()public void
 {
 index();"marseille"
 }

We could't close this section without talking a bit about . Juzu is deeply integrated at thesafe urls
heart of the Java compiler and performs many checks to detect applications bugs during the
application compilation. Among those checks, templates are validated and the url syntax is@{ }

checked against the application controllers. In fact Juzu will resolve an url syntax until it finds one
controller that resolves the specified name and parameters. If not Juzu will make the compilation
fail and give detailled information about the error. This kind of feature makes Juzu really unique
among all other web frameworks, we will see some other later.

Juzu leverages the (APT) facility standardized since Java 6. APTAnnotation Processing Tool
works with any Java compiler and is not specific to a build system or IDE, it just works
anywhere, we will see later that it even works with Eclipse incremental compiler.

http://download.oracle.com/javase/6/docs/technotes/guides/apt/index.html

Page 11 of 15

5
Actions

Now it's time to introduce action controllers, actions are method annotated by the @Action
annotation. Unlike views, actions are only called when an action url is processed by the portal,
whereas a view controller method can be invoked any time by the portal.

The role of an action controller is to process actions parameters. Each parameter of an action
controller method is mapped to the incoming request processed by the portal, such parameters
can be encoded directly in the URL or be present in the form that triggers the action.

The weather temperature in ${location} is ${temperature} degrees.

<% locations.each() { location -> %>
${location}
<% } %>

<form action="@{add()}" method="post">
 <input type="text" name="location" value=""/>
 <input type="submit"/>
</form>

In our example, we use a form which contains the the #location# action parameters. In order to
create an action url we use the same syntax shown for view url but this time we don't@{add()}

need to set any parameter, instead the form parameters will be used when the form is submitted.
However this is not mandatory and instead we could have url parameters such as

, such syntax is valid specially when it is used without a@{add(location = 'washington'}

form. Obviously there is the possibility to mix form and action parameters.

When the url is processed, the following action controller method will be invoked:

 @Action
 Response add(String location)public
 {
 locations.add(location);
 Weather_.index(location);return
 }

The method process the parameter and add it to the set. After this thelocation locations

Page 12 of 15

portal will proceed to the page rendering phase and will call the method to refresh theindex()

application.

Page 13 of 15

6
Type safe templating

We have seen previously how render templates from a controller by passing them parameters.
Templates use expressions that often refers to parameters passed by the controller when it${ }

renders the template. For this purpose we used an in which we put the variousHashMap

parameters that the template will use during rendering.

This syntax is a generic way to do by using an untyped syntax, indeed if a template parameter
name changes the controller will continue to compile because of the generic parameter map. To
improve this situation, parameters can be declared thanks to a tag inside the template:param

#{param name=location/}
#{param name=temperature/}
#{param name=locations/}

The weather temperature in ${location} is ${temperature} degrees.

<% locations.each() { location -> %>
${location}
<% } %>

<form action="@{add()}" method="post">
 <input type="text" name="location" value=""/>
 <input type="submit"/>
</form>

For instance the parameter is declared by the tag.location #{param name=location/}

During the Java compilation, Juzu leverage those parameter declarations to provide a more
convenient way to render a template.

Indeed the tight integration with the Java compiler allows Juzu to generate a template class for
each template of the application, such template class inherits the class and addsTemplate

specific methods for passing parameters to a template in a safe manner.

Page 14 of 15

 @View
 index(String location)public void
 {
 index.location(location).
 temperature(weatherService.getTemperature(location)).
 locations(locations).
 render();
 }

As we can see, the is not used anymore and now we use a type safe and compactHashMap

expression for rendering the template. Each declared parameter generates a method named by
the parameter name, for the parameter, we do have now a location location(String

 method that can be used. To make the syntax fluent, the parameter methods can belocation)

chained, finally the method is invoked to render the template, however it does notrender()

require any parameter since all parameters where passed thanks to the parameter methods.

The Java name of the generated template class is the name of the template in the templates
package of the application. In our case we do obtain the

 class name. It is very easy to use ourexamples.tutorial.weather6.templates.index

subclass by injecting the template subclass instead of the generic class.Template

 @Inject
 @Path("index.gtmpl")
 examples.tutorial.weather6.templates.index index;

Of course it is possible to import this value and use directly the class name. We usedindex

directly the full qualified name of the class for the sake of the clarity.

Page 15 of 15

7
Wrap up

We reached the ends our walk through Juzu, now you can learn more and study the Booking
application. This application can be found in the package you downloaded in the booking
directory.

