Open Engineering
Service Bus
Documentation

Table of Contents

[. OPENENGSB FraMEBWOIKccoiiiiiieiiiiiie ettt e e e e e eas 1
1. What is the Open Engineering SErviCe BUScoocuviiiiiiiiieiiiie e 2
2. When to use the OPENENGSBccciiieiiiiciieiee et e e e e e e s e e e e e e e e naans 3

2.1. The OpenENgSB as Base ENVIronmeNtcooeoiviiiiiiieeiee e 3
2.2. Reusing integration Components and WOrkflowSueeviiiiiimieiiininieiinn. 3
2.3. Management ENVIrONMENT ... e e e 3
2.4. Simple Development and Distribution Managementcooccvveeiriieeenniieeeenne 3
2.5. Simple Plug-INs and EXIENSIONSccoiuiiiiiiiiiiee et 3
3L QUICKSIA oo 4
3.1. Writing new projects using the OpenENngSBcoovvioiiiiiiiiiiiee e 4
3.2. Writing Domains for the OpenENgSBccoovvviiiiiiiiiiiccceeeeeeeeeeeeeeeee e 4
3.3. Writing Connectors for the OpenENgSBcccviiiiiiieiiiiee e 4
AN o g 1] (= o 11 = SRR 5
T o . SRR 5
4.2, COMNECLONetteeitieeee sttt e e e e e e et et e e e e e s s et b be e et e e e e e s s e nnbbbeeeeeeeesaannbbbnneeeaeesaanns 5
5. ContexXt ManaQEMENTcouiiiiiiiee ettt e e et e e e e e e e e et s e e e e e e eeearea e e eeeaeeeanennnn s 6
6. Persistence in the OPENENGSBuuuuuiiiiiiiiiiiiiiienre e anana———_ 7
7. WOTKFIOWS ...ttt e ettt e e e e e e e sttt e e e e e e e e s nnntaeeeeaaeeeeannneees 8
7.1, WOIKFIOW SEIVICEeeiieiieiee ettt e et a e e e e s ee e e e e e e s e enneeees 8
7.2. RUIEBIMANAGET ..ottt e e as 8
7.3, PIOCESSES ... 8
8. External DOmains and CONNECLOISccoiuuiieeiiiiieeeaiieiee e eiteee e s e e s sbee e e s seeeeeesenneeeas 9
8.1. Connect With CSharpocociiiiieiiie e 9
oA o (04 Y/ 1o 9
8.3. USING IM'S PrOXYING ..eeeeeeurieeeeiitrieeeaiseeeessineeeeaassseeessassseeessnnneesaasnneeeenannneeenanns 9
[1. OpenEngSB Available Domains & CONNECLOIScocuviieiiiiiiiieeiiieee et 11
L& I N o) o= 4 o TN o o= o PRSP 12
SN I 1= o (o o PSP 12
9.2. FUNCLIONEl INLEITACEvveiee it 12
0.3, CONNECLOISceeieiiiiiiiiiiiii ittt ettt ettt ettt ettt ettt ettt ettt et ee e e et eeeeeeeeeeeeeeeeeees 12
0 S @11V 5 o 0= o SRR 13
1O.1. DESCIIPLION eeiiiittieeeiitiee e ettt ettt e et e ettt e sttt e e e e e e e et e e e nntn e e e e annneeas 13
10.2. FUNCLION@l INEEITACE ..vviiiie e e e e e e e s 13
10.3. COMMECLOISevteeieiiee e ettt e e e e et e e e e e e e et e e e e e e e e sab bbb e e e e e e e e s sannnebeeeeeeans 13
I S T S T = o PRI 14
T O 9 7= 1 (o 14
11.2. FUNCIONAl INEEITACE ...eiiiieiei e e e e e e 14
I 0] 09T o (0 = PR 14
12, REPOIT DOMBIN ..eeiiiiiiiie ittt ettt et e e ettt e e s st e e e e s nbb e e e e anbe e e e e nnbeneeeaas 15
N T I T o] o (o OSSR 15
12.2. FUNCLIONE] INEEITACEvveieeiiieiee e 15
12.3. CONMMNECLONSttueteitieitittiieietttetebebe bbbttt bbbttt sttt e ssnbsbnnnenenees 15

[11. OpenENgSB Commiters & CONITDULONSouvieiiiiiiee et 16

13. Getting Started as 8 DEVEIOPELviiiiiiieie e 17
13.1. Getting comfortable with the infrastructurecccccviiiiieiiiiee e, 17

Open Engineering Service Bus Documentation

13.2. Prer@QUISITESceeiiieiieeiiieie ettt ettt ettt e et e e e st e e e e nnbneeeeane 18
13.3. Starting OPENENGSBoviiiiiiie e a e e 18
13.4. USING ECHIPSE ...ttt e e e 19
13.5. Using Other IDES than ECHIPSEciiioiiiiiiiiicici e 19
G CI €11 o o1l g4 o1 = 4 o o SRR 19

14. How To Create an Interna CONNECLONoocviieiieiie et e e e e eieeee e e e e e 22
TA. 1. Prer@QUISITESceeiieieeeiiitie ettt e et e et e e e st e e e s st e e e e nnbeeeeeene 22
14.2. Creating a New CONNECLON PrOJECEvvvveieeeeeiiciiiiiieee e e e s e e e e e e e e snrrre e aa e 22
14.3. PrOJECE SLIUCLUIE ...ttt e e e e e e e e et e e e e e e e s e eanrareeeeaeeas 23
2 @ U (0 0 T o 23
14.5. Integrating the Connector into the OpenENgSB environmentcccccevcveeeenns 24

15. How To Create an Internal DOMAINcooiiiiiiiiiiieee e e e 25
15,1, Prer@QUISITESceeiiieiieeiiiiie e ettt e et e et e e e st e e e e s e e e s anbne e e e e 25
15.2. Creating a new domain ProjECEueeveeeeeiiiiiiiiiiee e e e e s cctrree e e e e errrer e 25
15.3. Integrating the Domain into the OpenENgSB environmentc.ccccvvvveeennn.. 26
15.4. COMPONENLEScieiieeiiieie e e e e e e et e e e e e e e e ettt aeeeeeeaeensaaaneeeeeeeennnes 26

16. Prepare and use NON-OSGi AtIfaCTSvveiiiieeiiiie e 29
16.1. USE WIAPPEA JAI'S ...cccouieeeeeiiiiie ettt e e 29
16.2. Create Wrapped ATTITACESooiiiiiieeieiee e 29
16.3. WOTKFIOW ..ttt e e e s 30

I N o [0 o PRSP 31
17.1. OpenENgSB Infrastructure SErver ..., 31
17.2. OpenENGSB BUIldoeeeiiiiee e 31
17.3. OpenENQGSB ISSUBTACKEScciiiiiiiieiiiiiie ettt 31
17.4. OPENENGSB QI ..eeieiiiiiieeiiiiee ettt e st e e s 31
17.5. OPENENGSB MAVEN ...ooiviiiiiiiiiiiieieieeeteeeeeeee ettt e e e 31
17.6. OpenENGSB Mailinglistc.ccvvviiiiieiiicceeece e 31

Y Y o0 = oo PP STPRRRRP 32
WA 7= Y2 W o] o TS Y7 = 33
A.L SUN CodiNg GUIAEIINEScoiiiiiiieiiiiie e 33

A2, GENEIEL ..ot a e e e e e e e an b rarrraaeeeaaas 33
R - 4 1 o PP PP PP 36
AL INO CIUITEN ittt e e s st e e s snbr e e e aas 36

A5, EXCEption HaNdliNgcooeiiiiiiiiiiiiec ettt 36

TR I £ TR 37

A7 XML FOMMEILING ..vveeeiiiieeeeeiieeee e e e s e e e s e e e e 37

B. WIiting DOCUMENTELIONoeiiiiiiiieiiiiiie ettt 39
B.1. General Documentation GUIEIINEScccvvviiiiiiee e 39

B.2. Document & domain OF CONNECTONceeerurereeiiiiieeessiieeeeseibeeeessbneeeessneeee e e e 40

B.3. USING DOCHOOKouviiiiiiiicii i 40

O I o= 0L SRR 44

Part |. OpenEngSB Framework

This part gives an introduction into the OpenEngSB project and explains its base usage environment and the
concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers
installation, configuration and usage of the administration interface to implement a tool environment according
to your needs.

The target audience of this part are users and developers.

Chapter 1. What is the Open Engineering Service

Bus

In engineering environmentsalot of different toolsare used. Most of these operate on the samedomain,
but often interoperability isthe limiting factor. For each new project and team member tool integration
has to be repeated again. In general, this ends up with numerous point-to-point connectors between
tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It
simplifiesdesign and implementation of workflowsin an engineering team. The engineering team itself
(or aprocess administrator) is able to design workflows between different tools. The entire description
process happens on the layer of generic domains instead of specific tool properties. This provides an
out of the box solution which allows typical engineering teams to optimize their processes and make
their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of
individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard al integrated tools and
workflows. This offers new ways in notifying managers at the right moment and furthermore allows
avery general, distanced and objective view on a project.

Although this concept isvery powerful it cannot solve every problem. The OpenEngSB is not designed
asagenera graphical layer over an Enterprise Service Bus (ESB) which allowsyou to design ALL of
your processes out of the box. Aslong as you work in the designed domains of the OpenEngSB you
have alot of graphical support and other tools available making your work extremely easy. But when
leaving the common engineering domainsyou al so |eave the core scope of the service bus. OpenEngSB
till allows you to connect your own integration projects, use services and react on events, but you have
to keep in mind that you're working outside the OpenEngSB and "falling back” to classical Enterprise
Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools
aready used for your development process, it will integrate them. Our service busis used to connect
the different tools and design a workflow between them, but not to replace them with yet another
application. For example, software engineers like us love their tools and will fight desperately if you
try to take them away. We like the wheels as they are, but we do not like the way they are put together
at the moment.

Chapter 2. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to
make clear in which situations the OpenEngSB can be useful for you.

2.1. The OpenEngSB as Base Environment

OSGi isavery popular integration environment. Instead of delivering one big product the products get
separated into minor parts and deployed within ageneral envioronment. The problem with this concept
isto get old, well known concepts up and running in the new environment. In addition tools such as
PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as
Karaf alow aricher and easier development. Neverthless, settting up such a system for development
means alot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

2.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start
from the ground and devel op a compl ete, own environment, only using existing connectors. Using the
OpenEngSB not only connectors but an entire integrated process, workflow and event environment
waits for you. In addition connectors to different tools can not only be adapted to the specific needs,
but also simply replaced by other connectors, using the Domain concept.

2.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this
environment can be added to your project standalone (similar to e.g. Tomcat management console€)
you also have the possibility to completely integrate the OpenEngSB management enviornment into
your Apache Wicket application.

2.4. Simple Development and Distribution Management

While typical ESB have to be installed seperately from your application the OpenEngSB is delivered
with your application. Develop your application in the OpenEngSB environment and scripts to embed
your application into the OpenEngSB are provided. In addition easy blending alows to adapt the
OpenEngSB visually to your needs and cooperate design.

2.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven
archetypes Plug-Ins can be created, uploaded and provided to al other OpenEngSB installations or
applications using the OpenEngSB.

Chapter 3. Quickstart

As adeveloper you have basically two ways in which you can use the OpenEngSB. One option isto
use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to
write Plug-Ins (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

3.1. Writing new projects using the OpenEngSB

TBW

3.2. Writing Domains for the OpenEngSB

TBW

3.3. Writing Connectors for the OpenEngSB

TBW

Chapter 4. Architecture

This chapter explains the architecture of the OpenEngSB in detail.

4.1. Domain

TBW

4.2. Connector

TBW

Chapter 5. Context Management

Each project in the OpenEngSB has its own context to store meta information necessary for running
inside of the OpenEngSB. The context basically is represented as a tree structure with key-value pairs
as leafs.

TBW - how to get initial valuesinto the context when a service instance is created.
TBW - how to do context lookup inside of domain and connectors.

TBW - how to write into the context inside of domain and connectors.

Chapter 6. Persistence in the OpenEngSB

The OpenEngSB has a central persistence service, which can be used by any component within in
the OpenENgSB to store data. The service is designed for flexibility and usability for the storage of
relatively small amounts of data with no explicit performance requirements. If special persistence
features need to be used it is recommended to use a specialized storage rather than the general storage
mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)
mechanisms. Instances of the persistence service are created per bundle and have to make sure that data
isstored persistently. If bundles need to share datathe common persistence service cannot be used, asit
doesnot support thisfeature. The persistence manager isresponsiblefor the management of persistence
service instances per bundle. On the first request from a bundle the persistence manager creates a
persistence service. All later requests from a specific bundle should get the exact same instance of the
persistence service.

The persistence solution of the OpenEngSB was designed to support different possible back-end
database systems. So if a project has high performance or security requirements, which can not be
fulfilled with the default database system used by the persistence service, it is possible to implement
adifferent persistence back-end. To make this exchange easier atest for the expected behavior of the
persistence serviceis provided.

http://github.com/openengsb/openengsb/tree/master/core/persistence/src/main/java/org/openengsb/core/persistence/PersistenceService.java
http://github.com/openengsb/openengsb/tree/master/core/persistence/src/main/java/org/openengsb/core/persistence/PersistenceManager.java
http://github.com/openengsb/openengsb/tree/master/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java

Chapter 7. Workflows

The OpenEngSB supportsthe modeling of workflows. This could be done by two different approaches.
First of all arule-based event approach, by defining actions based on events (and their content) which
were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy
to replace and extend. For long running business processes the secondary workflow method could be
used which is based on processes described in Drools-Flow.

The workflow service takes "events' as input and handles them using a rulebased system (JBoss
Drooals). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

7.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected
to the environment (domains and connectors). When an event is fired, the workflow-service spawns a
new session of the rulebase. The session gets popul ated with references to domain-services and other
helper-objectsin form of global variables. A drools-session is running in a sandbox. This means that
the supplied globals are the only way of triggering actions outside the rule-session.

7.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the
rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are
saved separately. All elements share a common collection of import- and global-declarations. These
parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or
function to the rulebase, make sure that all imports are present before. Otherwise the adding of the
elements will fail.

7.3. Processes

TBW - explain Drools-Flow processes.

http://github.com/openengsb/openengsb/tree/master/core/workflow/src/main/java/org/openengsb/core/workflow/WorkflowService.java
http://github.com/openengsb/openengsb/tree/master/core/workflow/src/main/java/org/openengsb/core/workflow/RuleManager.java

Chapter 8. External Domains and Connectors

TBW - Introduction

TBW - What is the difference between internal and external domains and connectors.

8.1. Connect With CSharp

TBW - reevaluate for new plugin system.

The CSharp connector is written on basis of the Apache ActiveMQ NMS connector and with help of
the Spring NmsTemplate. The code is checked into the repository and could be found in nonj ava/

cshar p. There an EngSB.dIn file. This project file has been developed with SharpDevelop 3, but is
also tested with Visual Studio 2008 CSharp Express Edition with the .Net Framework 3.5.

8.2. Proxying
The proxy mechanism allows for any method call to be intercepted.

8.2.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceManager for every Domain to instantiate a proxy. An
InvocationHandlerFactory has to be provided for proxying any call. The proxy has to be created via
the normal instantiation mechanism on the website.

8.3. Using JMS proxying

Thecurrent IM S Connector alowsfor internal method callsbeing redirected viaJM S, aswell asEvents
being raised through jms via an external source.

8.3.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceM anager for every Domain to instantiate aproxy. The
proxy hasto be created viathe normal instantiation mechanism on the website. Whenever now aproxy
method is called the call ismarshalled and sent viaJM Sto aqueue named <DomainlD>_method_send.
Themarshalling isdoneviaJSON. The mapping hasthe parameterstype, which can be Call, Exception
or Return, message, which in case of amethod call isasimple serialisation of the arguments and name,
which denotes the name of the method.

After sending the method call viaJM Sthe proxy waitsfor areturn at <DomainlD>_method_return. The
return message can use the same parameters as the send serialisation (type, name, message), but name
isignored. The message parameter is serialised to the correct return typeif typeis set to RETURN. If
the type is Exception a new JM SException is thrown with the message.

By default aJMS Broker is started on port 6000.
8.3.2. Event handling via JMS

For every Domain found at the start of the OPENENngSB Server JM SConnector starts a listener on
the <DomainlD>_event_send queue. The parameters used are type and event. The type parameter is

External Domains and Connectors

the class that has to be used to deserialise the event and be used as the argument to raiseEvent. After
the correct classis loaded the content of the event parameter gets deserialised into an instance of the

type parameter. The corresponding raiseEvent method is then called for the domain supported by this
EventListener.

When the Event was processed a message is sent to the <DomainlD>_event_return queue with the
type set to RETURN and message set to OK. In case of Exception the typeis set to exception and the
message is set to the exception message.

8.3.3. Test JMS Connector with Python Stomppy Client

To test the OPENENGSB JM S implementation with Python please follow the instructions

10

http://github.com/openengsb/openengsb/tree/master/nonjava/python/PythonClient.txt

Part II. OpenEngSB Available
Domains & Connectors

This part gives an overview about the domains and their functionality the OpenEngSB supports out of the box.
Furthermore each connector and necessary external tool configuration is explained.

11

Chapter 9. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email
notification.

9.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

9.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

9.3. Connectors

9.3.1. Email Connector
The email connector is asimple notification connector based on the javamail API.
9.3.1.1. External Tool Configuration

No external tool configuration is necessary.

12

http://github.com/openengsb/openengsb/blob/master/domains/notification/implementation/src/main/java/org/openengsb/domains/notification/NotificationDomain.java

Chapter 10. SCM Domain

The source code management (SCM) domain is the tool domain for all SCM toals, like Git or
Subversion.

10.1. Description

The SCM Domain polls external repositoriesfor changes of content under source control and provides
functionality to copy/export the repository content for further processing.

10.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

10.3. Connectors

10.3.1. Git Connector

The Git Connector isa SCM tool connector for the Git fast version control system.

10.3.1.1. External Tool Configuration
The external Git repository must be anonymously accessible with one of the following protocols:
1. git
2. http
3. ftp

No further configuration is needed.

13

http://github.com/openengsb/openengsb/blob/master/domains/scm/implementation/src/main/java/org/openengsb/domains/scm/ScmDomain.java
http://git-scm.com/

Chapter 11. Issue Domain

The issue domain isthe tool domain for al issue tracking tools, like Jira, Trac or Mantis.
11.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

11.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

11.3. Connectors

11.3.1. Trac Connector

The Trac Connector isaissuetool connector for the Trac project management and issue tracker system.

11.3.1.1. External Tool Configuration

The external Trac tool hasto be accessible via XmlRpc. For this purpose the XmIRpcPlugin hasto be
installed (see http://trac.edgewall.org/wiki/PluginList).

14

http://github.com/openengsb/openengsb/blob/master/domains/issue/implementation/src/main/java/org/openengsb/domains/issue/IssueDomain.java
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/PluginList

Chapter 12. Report Domain

The report domain is the tool domain for report generation and management tools.

12.1. Description
The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports
and a category system for report storage.

12.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

12.3. Connectors

12.3.1. Plaintext Report Connector

The plain text report tool connector is simple implementation of the report domain, which generates
plain text reports.

12.3.1.1. External Tool Configuration

No external configuration is needed.

15

http://github.com/openengsb/openengsb/blob/master/domains/report/implementation/src/main/java/org/openengsb/domains/report/ReportDomain.java

Part Ill. OpenEngSB
Commiters & Contributors

This part explains how to develop additional domains, connectors and similar parts. In addition it explains the
rules and infrastructure according to which the project is devel oped.

The target audience of this part are developers.

16

Chapter 13. Getting Started as a Developer

This chapter describes the basic steps to get started as a devel oper for the OpenEngSB project.

13.1. Getting comfortable with the infrastructure

As any open source project the OpenEngSB development depends on a wide range of different
infrastructural and communication methods to get things done. The following sub-chapters describe
the different tools, their location and usage in the OpenEngSB devel opment process.

13.1.1. Mailing Lists

The most important communication medium for the OpenEngSB development team is email. Mostly
all of the vital design, architectural and infrastructural decisions are discussed on the OpenEngSB
developer list. Therefore, the first step to get involved into the development of the OpenEngSB is to
register to the Google Groups OpenEngSB Developer Mailing List [http://groups.google.com/group/
openengsb-dev] and say hello world.

While natifications from the Hudson Build Server, about code commits and Jira issues are vital
for the OpenEngSB core developer, they may not be as interesting for you. If you get annoyed
by the automatically generated notification mails ignore all mails from openengsb@gmail.com
and noreply @github.com to openengsb-dev@googlegroups.com. Please remember it is important to
configure both, t o and f r omin your filter. Both addresses will also send notifications directly to you
which are important and should not be ignored!

13.1.2. Jira Issue Tracker

All issues are stored within a Jira instance reachable at issues.openengsb.org [http://
issues.openengsb.org/jira/lbrowse/ OPENENGSB] . Please use theissuetracker to keep track of all bugs,
ideas and new features you're currently working or of which you think they might be interesting.

13.1.3. Code Repository

As for any open source project the source code is public available. We've chosen Github [http://
github.com] for this task. The project is available at github.com/openengsb/openengsb [http://
github.com/openengsh/openengsb].

As explained later within this document Github is not only used to store our code, but also for
collaboration, code review and patch-tracking.

13.1.4. Maven Repository

For the moment the OpenEngSB artifacts are not stored at maven.central, but in an own Nexus maven
repository available at maven.openengsb.org [http://maven.openengsb.org/nexus]. If any additional
artifacts are required currently not at any maven repository we can host them on the server. Please
simply write to the mailing list which artifact is required and provide the artifact and the pom GAF
parameters. Please dways validate if we are allowed to redeploy the artifact.

17

http://groups.google.com/group/openengsb-dev
http://groups.google.com/group/openengsb-dev
http://groups.google.com/group/openengsb-dev
http://issues.openengsb.org/jira/browse/OPENENGSB
http://issues.openengsb.org/jira/browse/OPENENGSB
http://issues.openengsb.org/jira/browse/OPENENGSB
http://github.com
http://github.com
http://github.com
http://github.com/openengsb/openengsb
http://github.com/openengsb/openengsb
http://github.com/openengsb/openengsb
http://maven.openengsb.org/nexus
http://maven.openengsb.org/nexus

Getting Started as a Devel oper

13.1.5. Build Server

The master and integration branch of the OpenEngSB repository are watched and built by a
Hudson build server instance available at build.openengsb.org [http://build.openengsb.org/hudson/].
Notifications about failures are directly send to the OpenEngSB devel oper list.

13.2. Prerequisites

First of al the latest JDK has to be installed on the system and the JAvA_HOMVE variable has to be set
accordingly. All further steps are described in the subsections of this chapter.

13.2.1. Installing Git

Itisassumed that Git isinstalled. For Linux your distribution provides already apackagefor git. Please
use the package manager of your distribution (apt, yum, pacman, ...) toinstall it. For MAC binariesare

available at git-scm.com. For MS users cygwin [www.cygwin.com] or msysgit [code.google.com/p/
msysgit]. After installing, set at least the following variables:

git config - - gl obal user.name "Fi r st nane Last name"
git config - - gl obal user.email user @xanpl e. com
git config - - gl obal core.autcrlf input

13.2.2. Installing Maven

Finally download Apache Maven3 and unpack it. Add the path of the maven binary to your PATH
variable. Furthermore you should set the MAVEN_OPTS environment variable to allow Maven to use
more RAM. If you don't you'll get Out Of Memory errors.

export PATH=$PATH:/ pat h/ t o/ maven/bin
export MaVEN_oPTS="-Xmx1024M -XX:MaxPermSize=512m'

Add these commandsto ~/ . bashr ¢ to make the settings permanent.
13.3. Starting OpenEngSB

The next step is to get the OpenEngSB source by checking out the current master using git:
git clone git://github.com/openengsb/openengsb.git

Now start the OpenEngSB by executing

18

http://build.openengsb.org/hudson/
http://build.openengsb.org/hudson/
git-scm.com
www.cygwin.com
www.cygwin.com
code.google.com/p/msysgit
code.google.com/p/msysgit
code.google.com/p/msysgit

Getting Started as a Devel oper

mvn clean install pax:provision

This command builds, tests and runs the OpenEngSB right from your command-line. Executing the
following command will shutdown it again:

shutdown

13.4. Using Eclipse
Eclipse had been chosen by the OpenEngSB team as the main development environment. After

checkout the code the following command creates the required Eclipse project files:

mvn install
mvn eclipse:eclipse

Start Eclipse and select any workspace. The folder ecl i pse- wor kspace isignored in the OpenEngSB
project structure for this purpose. But you can choose any other directory if you prefer. At the
preference page go to Java/Build Path/Classpath Variables and create a new M2 _REPO pointing to
~/ . 2/ reposi t ory. Now use File, Import..., Existing Projects into Workspace. As the root directory
select the root of the OpenEngSB source. Eclipse will list several projects and for now it's best to
import them all by clicking Finish.

At openengsb/ et c/ ecl i pse/ eclipse configuration files for formatting and Checkstyle can be found.
These files should be used.

13.5. Using Other IDEs than Eclipse

Basically, the OpenEngSB is developed in plain Java, which means any other |DE than Eclipse can be
used too. While there are tools for most IDEs to use Checkstyle, but non of it supports the formatting
file of the OpenEngSB. Please use Checkstyle, which automatically validates the eclipse formatting
rules too.

13.6. Git Documentation

13.6.1. Usage

First of al this chapter explains only the very basics of Git and only that parts directly relevant for the
development of the OpenEngSB project, but not the entire idea and possibilities of Git. Please read
some tutorials first to get how to work with Git and see this chapter more as an summary! Y ou may
also take alook at the Git Documentation Page and the Pro Git Book.

19

http://git-scm.com/documentation/
http://progit.org/book/

Getting Started as a Devel oper

13.6.2. Github

OpenEngSB isdevel oped at github.com. Please create an account there and exploreitsfeatures. Specify
your real namein theadmin tab and add apicture. Thismakesit easier to associate your commitsto you.

13.6.3. Starting up and configure

Before starting to work with Git some settings should be applied to Git. Therefore simply execute the
following commands.

git config - - gl obal user.name "Fi r st nane Last nanme"
git config - - gl obal user.email user @xanpl e. com

git config - - gl obal color.ui "auto"

git config - - gl obal pack.threads 0"

git config - - gl obal diff.renamelimit "0"

git config - - gl obal core.autocrlf "input"

Additionally execute the special settings for github as could be found on github in the "Account
Settings' tab is a point "Global git config information”. Please use the two git commands described
there

git config - - gl obal github.user user nare
git config - - gl obal github.token t oken

If you don't already have an SSH key you can create one by executing ssh-keygen Simply answer all
guestions from the application with "enter" without enter any values. Afterwards the content of the
i d_rsa. pub file from your ~/ . ssh/ directory should be submitted to github (Account Settings/SSH
public keys).

13.6.4. Contributor Workflow

Contributor are all developer who like to contribute to the OpenEngSB project, but not have commit
rights to openengsh/openengsb.

Please start by choose or create a new issue. Now create a new fork of the OpenEngSB
a Github (if you've not done aready so). Clone you're fork, but also add the origina
openengsb repository as remote repository. Please create a new branch named OPENENGSB-
ISSUE_NUMBER_Y OURE_WORKING_ON. Optionaly append /DESCRIPTION. This is the
OpenEngSB schema for naming branches and welll really appreciate if you work according to it. In
addition create the branch based on the origin/master oder origin/integration and not the branches of
your fork. In this case you don't have to bother with updates of these branches in the OpenEngSB.

Now hack, commit and push as you like. If you think you're finished execute the et ¢/ scri pt s/ pre-
push. sh script validating your code, tests, licensesand so on. If everything workswithout errors create
aGithub pull request on Github, between the master or integration branch (depending on whereyou've
created your branch on) and your branch. In additionit will help if you add thelink to the pull request to
the issue you'reworking on. A commiter will tend as fast as possible to your request and give feedback
or directly merge your commit into the integration/master branch.

20

http://github.com/

Getting Started as a Devel oper

13.6.5. Commiter Workflow

The only difference between a commiter and a contributor isthat he has to watch and merge branches
of contributors. If acommiter ishappy with thework of acontributor. Comments and other discussions
should be done on the mailing list and/or viathe Github review system and pull requests.

In addition commiters typically do not create forks but rather create their branches directly in the
OpenEngSB repository. Thisisdone because the repository is covered by the OpenEngSB build server
and in addition keeps everything closer together.

13.6.6. Additional Rules

1

(Contributor/Committer) All development is done in forks (also of the core developers) One
exception to this rule exists: Small fixes and maintenance work which is NOT related to a new
feature and does not exceed 2 commits should be cherry-picked into the master directly.

. Contributor/Committer) Rebase is not dead (although we use merges). Never ever commit local

merges. You still should develop in local dev branches and rebasing them with the upstream
branches. Only if nobody else has access to your fork you can be sure that nobody changed it!

. (Committer) If merging branches from forked repositories ALWAY S use the - - no-f £ option for

merges; this will always create a merge node (even if a fast-forward merge is possible). Thisis
required to create a clear and consistent history!

Avoid backward merges from the master and keep feature branches small! This does not mean that
backward merges from master are forbidden. But they should not be done too often, since they
create a history not easy to read. Please use the method described on this page (with - - no-ff --
no- conmi t) to reduce the number of merge nodes.

. Use meaningful feature branch names. Using the merge history in the master you can easily follow

the development of features. But this requires (maybe long) good names! In addition, always start
with OPENENGSB-NUMBER of the issue you're working on. Try to always do work based on
issues. If no issue covers what you're doing create one.

21

Chapter 14. How To Create an Internal Connector

This chapter describes how to implement a connector for the OpenEngSB environment. A connector
is an adapter between an external tool and the OpenEngSB environment. Every connector belongsto
a domain which defines the common interface of all its connectors. This means that the connector is
responsible to trandate all calls to the common interface to the externally provided tool.

14.1. Prerequisites

In caseit isn't known what atool domain isand how it defines the interface for the tool connector then
Section 4.1, “Domain” is a good starting point. If there's already a matching domain for thistool it is
strongly recommended to useit. But if thistool requires anew domain it hasto be created. Thisisaso
described in (TODO link to devel oper.howto.internal.domain).

14.2. Creating a new connector project

To take the burden of the developer creating the initial boilerplate code and configuration, a Maven
archetype is provided for creating the initial project structure. Furthermore, if the new connector is
developed inside of the OpenEngSB repository, a shell script can be found at et ¢/ scri pts/ gen-
connect or . sh for further help in creating a new connector project.

14.2.1. Using the Maven Archetype
TBW - explain all variables
14.2.2. Using the gen- connect or. sh shell script

Calling the script should be done from the domain-specific directory. |.e. if your are developing a
new connector for the Notification-Domain your current directory should be donai ns/ notii fi cati on.
Inside your favourite shell execute the script.

notification $../../etc/scripts/gen-connector.sh

The script tries to guess as much as possible from your current location and previous input. Guessed
values are displayed in brackets. If the guessiswhat you want, simply acknowledge with Ret ur n. The
following output has been recorded by executing the script in the domai ns/ noti fi cat i on directory:

Domain Name (is notification): <Enter>

Domain Interface (is NotificationDomain): <Enter>

Connector Name: twitter <Enter>

Version (is 1.0.0-SNAPSHOT): <Enter>

Project Name (is OpenEngSB :: Domains:: Notification :: Twitter): <Enter>

Only the connector name was set, everything else has been guessed correctly by the script. After this
inputsthe Maven Archetype gets called and may ask you for further inputs. Y ou can simply hit Ret ur n
each time, because the values have been already set by the script. If the script finishes successfully the
new connector project has been created and you may start implementing.

22

How To Create an Internal Connector

14.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

- pom xm
- src
- main
- java
| -- org
| - openengsb
| - domai ns
| - notification
| -- twitter
| - interna
| | -- MyServicelnpl.java
| | -- MServicel nstanceFactory.java
| - MyServi ceManager. j ava
- resources
- META- I NF
| -- spring
| -- connector - cont ext . xni
- OSA - I NF
- l10n
- bundl e_de. properties
- bundl e. properties

The Wy Servi cel npl class implements the interface of the domain and thus is the communication
link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run
the end user) enough information on how to configure a connector, the MySer vi cel nst anceFact ory
class provides the OpenEngSB with meta information for configuring and functionality for creating
and updating a connector instances. The MyServi ceManager class connects connector instances
with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as OSGi
services and adds necessary meta information to each instance. Since the basic functionality is
mostly similar for all service managers, the MySer vi ceManager class extends a common base class
Abstr act Ser vi ceManager . In addition the Abst r act Servi ceManager also persists the configuration
of each connector, so that the connector instances can be restored after a system restart.

TBW - Spring DM

The OpenEngSB has been built with localization in mind. The Maven Archetype aready generates
two bundl e*. properties files, one for English (bundle.properties) and one for the German
(bundle_de.properties) language. Each connector has to provide localization through the properties
filesfor service and attributes text values. Thisincludes localization for names, descriptions, attribute
validators, option values and more. For conveniencetheBundl eSt ri ngs classisprovided onall method
calls where text is needed for user representation for a specific locale.

14.4. Customizing

TBW add attributes, validation, ...

23

How To Create an Internal Connector

14.5. Integrating the Connector into the OpenEngSB
environment

TBW - add in integrationtest

24

Chapter 15. How To Create an Internal Domain

This chapter describes how to implement a domain for the OpenEngSB environment. A domain
provides a common interface and common events on how to interact with connectors for this domain.
For a better description of what a domain exactly consists of, take a look at the architecture guide
Chapter 4, Architecture.

15.1. Prerequisites

In caseit isn't known what adomain is and how it defines the interface and events for connectors, then
Chapter 4, Architecture is agood starting point.

15.2. Creating a new domain project

To get devel opers started creating a new domain aMaven archetypeis provided for creating theinitial
project structure. Furthermore, if the new domain is developed in the OpenEngSB repository, a shell
script can befound at et ¢/ scri pt s/ gen- domai n. sh as further convenience.

15.2.1. Using the Maven Archetype

TBW - explain all variables

15.2.2. Using the gen-domai n. sh shell script

The script should be executed from the domains directory in your OpenEngSB repository.

domains $../etc/scripts/gen-domain.sh

You'll be asked to fill i afew variables the script needs to create the initial project structure. Based
on your input, the script tries to gues further values. Guessed values are displayed in brackets. If the
guessiscorrect, simply acknowledgewith Ret ur n. Asexampl e, thefoll owing output has been recorded
while creating the Test domain:

Domain Name (is mydomain): test <Enter>
Version (is1.0.0-SNAPSHOT): <Enter>
Prefix for project names (is OpenEngSB :: Domains:: Test): <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed by the script. After
giving the inputs, the Maven archetype gets executed and may ask for further inputs. Y ou can simply
hit rRet ur n, asthe values have been already correctly set by the script. If the script finishes successfully
two new Maven projects, the domain parent and domain implementation project, have been created
and setup with a sample implementation for a domain.

15.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

- inplenmentation
| -- pom xm

25

How To Create an Internal Domain

| - src

| -- main

I | -- java

I | -- org

| | - openengsb

| | - donmai ns

| | - test

| | - MyDonai n. j ava

| | - MyDomai nEvents. j ava
| | - MyDomai nProvi der. j ava
| -- resources

I - META- I NF

I | -- spring

| | -- notification-context.xn
| - 0SG-INF

| - l10n

| - bundl e_de. properties

| - bundl e. properties

-- pom xmi

TBW - explain structure

Although the generated domain doesin effect nothing, you can already start the OpenEngSB for testing
with mvn clean install pax:provision and the domain will be automatically be picked up and
started.

TBW - Spring DM

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. E.g.
theMaven Archetypealready createstobundl e*. properti es files, onefor English (bundle.properties)
and one for the German (bundle_de.properties) language. Each connector has to provide localization
through the properties files. For domains, this only means localization for a name and description of
the domain itself.

15.2.4. Customizing

TBW

15.3. Integrating the Domain into the OpenEngSB environment

TBW

15.4. Components

1. Domaininterface - Thisistheinterface that connectors of that domain must implement. Operations
that connectors should provide, are specified here. Events that are raised by this Domain in
unexpected fashion (e.g new commit in scm system) are specified on the Interface. The Raise
Annotation and the array of Event classesit takes as an argument are used. If the Raise annotation
is put on amethod the events that are specified through the annotation are raised in sequence upon
acall.

2. Domain event interface - Thisis the interface that the domain provides for its connectors to send
eventsinto the OpenEngSB. The event interface containsar ai seEvent (SoneEvent event) method
for each supported event type.

26

How To Create an Internal Domain

3. Domain Provider - The domain provider is a service that provides information about the domain
itself. It is used to determine which domains are currently registered in the environment. Thereis
an abstract class, that takes over most of the setup.

4. Spring context - There are three services, that must be registered with the OSGi service-
environment. First there is the domainprovider of course. Moreover the domain must provide a
kind of connector itself, since it must be able to handle service calls and redirect it to the default-
connector specified in the current context. And finally the domain provides an event interface
for its connectors, which can be used by them to send events into the OpenEngSB. The default
implementation of this event interface ssimply forwards all events sent through the domain to the
workflow service. But domains can also provide their own implementation of their event interface
and add data to events or perform other tasks. There is a beanfactory that creates a Java-Proxy that
can be used as ForwardService both for the forwarding of service calls from domain to connector
and for the forwarding of events to the workflow service. The service call ForwardService looks
up the default-connector for the specified domain in the current context and forwards the method-
call right to it. The event forward service simply forwards all events to the workflow service of
the OpenEngSB.

<0sgi : servi ce>
<osgi:interfaces>

<!-- Every Connector mnust be registered with the Domain-interface -->
<val ue>or g. openengsb. cor e. cormon. Donai n</ val ue>
<l-- The domain-interface goes here-->

<val ue>or g. openengshb. domai ns. notification. Notificati onDomai n</val ue>
</ osgi:interfaces>
<osgi : servi ce-properties>

<!-- The convention for the service-id is "domains. <domai n- name>" -->

<entry key="id" val ue="domains.notification" />

<l-- To allow other services (e.g. workflow) to distinguish the forward-service
from other connector-instances, this attribute nust be set to "domain" -->

<entry key="openengsh. service.type" val ue="domai n" />
</ osgi : servi ce-properties>

<l-- use the bean-factory to generate the forward-service -->
<bean cl ass="or g. openengsb. cor e. cormon. Def aul t Donai nPr oxyFact or yBean" >
<l-- Need to specify the domain-interface again -->

<property name="domai nl nterface">
<val ue>or g. openengsb. domai ns. noti fi cati on. Notifi cati onDomai n</ val ue>
</ property>
<l-- this is used as a | ookup-key in the context -->
<property name="domai nNane" val ue="Noti fi cati onDomai n" />
<l-- reference to the context-service (obtained below) -->
<property name="context" ref="contextService" />
</ bean>
</ osgi : servi ce>

<0sgi : service>

<osgi:interfaces>

<!-- The common domai n event marker interface, each domain events interface has to
extend -->

<val ue>or g. openengsb. cor e. cormon. Domai nEvent s</ val ue>
<l-- The specific event interface containing the rai seEvent nethods -->
<val ue>or g. openengsb. domai ns. notificati on. Notificati onDomai nEvent s</ val ue>

</ osgi:interfaces>

<0sgi : service-properties>

<I-- The convention for the service-id is "domai ns. <donmi n- nane>. events" -->
<entry key="id" val ue="domains.notification.events" />
<entry key="openengsb. servi ce.type" val ue="domai n-events" />

</ 0sgi : servi ce-properties>

<l-- the default inplenmentation of the event interface is provided by this class

27

How To Create an Internal Domain

whi ch generates a proxy that forwards all events to the workfl ow service
obt ai ned bel ow -->
<bean cl ass="org. openengsb. core. event s. Donai nEvent sPr oxyFact or yBean" >
<property name="domai nEvent | nterface">
<l-- the domain event interface (sane as above in the osgi:interfaces section -->
<val ue>or g. openengsh. domai ns. notificati on. Notificati onDomai nEvent s</val ue>
</ property>
<property name="wor kfl owServi ce" ref="workfl owService" />
</ bean>
</ 0sgi : servi ce>

<osgi : reference id="workfl owService"

i nterface="org. openengsb. cor e. wor kf | ow. Wor kf | owSer vi ce" />
<osgi : reference id="context Service"

interface="org. openengshb. core. common. cont ext . Cont ext Servi ce" />

28

Chapter 16. Prepare and use Non-OSGi Artifacts

16.1. Use Wrapped Jars

Basically, wrapped JARs do not differ in any way from basic Maven artifacts, besides that they are
deployablein OSGi environments. If it isrequired to use these artifactsin OpenEngSB nothing specific
has to be done. All artifacts in the wrapped directory are deployed in a Maven repository which is
added to theroot POM. Thereforethese artifacts can be used directly. In any caseyou liketo build these
artifacts on your own point your console to the wrapped directory and execute nvn clean install.
Thiswill install the artifactsin thelocal Maven repository and make them available for the application.

16.2. Create Wrapped Artifacts

This chapter is a step by step guide on how to create awrapped JAR.

1

In case that no already wrapped library is available in the public repositories a package has to be
created. While there are packages available to generate the project they are not required. Most of
the work is already abstracted into the root-pom of the wrapped directory. Therefore the project
should be created manually. First of all create afolder with the name of the project you like to wrap.
Typically the groupld of the bundle to wrap is sufficient. For example, for a project wrapping all
Wicket bundles the folder org.apache.wicket is created.

. Asanext step add the newly created folder as a modul e to the wrapped/pom.xml file in the module

section. For the formerly created Wicket project org.apache.wicket should be added to the module
section.

. Now create a pom.xml file and a osgi.bnd file in the newly created project folder.

. The pom.xml containsthe basic project information. As parent for the project the wrapped/pom.xml

should be used. Basicaly for every wrapped jar the project has the following structure;

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l--

OPENENGSB LI CENSE

-->

<proj ect >

<par ent >
<gr oupl d>or g. openengsb. wr apped</ gr oupl d>
<artifact|d>openengsb-w apped</artifactld>
<ver si on>1</ ver si on>

</ par ent >

<properties>
<bundl e. synbol i cName>wr apped_j ar _gr oup_i d</ bundl e. synbol i cNane>
<wr apped. gr oupl d>wr apped_j ar _gr oup_i d</ wr apped. gr oupl d>
<wr apped. artifactld>w apped_j ar_artifact_id</w apped. artifactld>
<wr apped. ver si on>wr apped_j ar _ver si on</ wr apped. ver si on>
<bundl e. nanespace>${ w apped. gr oupl d} </ bundl e. nanmespace>

</ properties>

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>${ wr apped. gr oupl d} </ gr oupl d>
<artifact|d>${parent.groupld}. ${w apped. groupl d}</artifact!|d>

29

Prepare and use Non-OSGi Artifacts

<ver si on>${ wr apped. ver si on} </ ver si on>
<nanme>${ bundl e. synbol i cNane} </ nane>
<packagi ng>bundl e</ packagi ng>
<dependenci es>

<al | _j ars_whi ch_shoul d_be_enbedded />
</ dependenci es>

</ proj ect >

5. The osgi.bnd file contains the OSGi specific statements for the maven-bundle-plugin. While the
default export and import are already handled in the root pom project specific settings have to be
configured here. For example all packages within the bundle-namespace are always exported. This
is for most scenarios sufficient. In addition all dependencies found are automatically imported as
required. Thisis generally not desired. Instead the parts of the library which have to be imported
should be defined separately. The following listing gives a short example how such a osgi.bnl file
can look like. For afull list of possible commands see the maven-bundle-plugin documentation.

#

OPENENGSB LI CENSE

#

Enbed- Dependency: *; scope=conpil e|runtine;type=!ponyinline=true

| mport - Package: sun.m sc;resol ution: =optional, \
javax. servlet;version="[2.5.0, 3.0.0)",\
*:resol ution: =optiona

16.3. Workflow

The OpenEngSB typically does not have to maodify anything within this directory. In addition all
artifacts in this part are independent of the typical OpenEngSB build and deploy life-cycle. The
versions within these artifacts change completely independent of the OpenEngSB. Therefore this
directory and its subprojects are not entered within the module section of the root pom! Instead, if itis
really required to build them (e.g. if anew artifact is added) the maven commands have to be executed
directly in the wrapped sub-directory.

If adeveloper adds anew library in thisfolder it isNOT directly available to al other devel opers. For
testing it is possible that the other devel opers build the wrapped directory independently. Neverthel ess,
the proposed solution is to inform a project admin about the new library in you branch. The admin
can simply deploy (using maven clean install deploy) your artifacts to the maven repositories.
Afterwards the wrapped artifacts are downloaded for all other devel opers during the build process.

30

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

Chapter 17. Admin

see http://openengsb.org/team-list.html

17.1. OpenEngSB Infrastructure Server

The main server hosting our selfmaintained infrastructure runs Ubuntu Linux and is hosted under the
domain "openengsb.org". The server is mainained remotely via SSH [pw:server].

An apache2 server processes all requests and forwards it to the corresponding service. The config-
file that connects the subdomains to the corresponding services is located in /etc/apache?2/sites-
enabled/000-default.

This forwards point to a directory in /var/www that redirects the browser to the correct page (like
build.openengsb.org -> build.openengsb.org/hudson) The tomcat-server for the homepage is located
in /var/opt/tomcat. JIRA islocated in /var/opt/atlassian-jira-enterprise-4.1.2/ Further all passwd-files
to control http-access are located in /etc/apache2

17.2. OpenEngSB Build

Hudson is accessible at http://build.openengsb.org. To become an admin create account and write mail
to one of the current admins.

17.3. OpenEngSB Issuetracker

JIRA is accessible at http://issues.openengsb.org. To become an admin create account and write mail
to one of the current admins.

17.4. OpenEngSB git

The github islocated at http://git.openengsb.org. To become an admin create a github-account (if you
don't have one) and write mail to one of the current admins.

17.5. OpenEngSB Maven

17.5.1. internal
The internal maven-repo is accessible at maven.openengsb.org. Use [pw:nexus] to login.
17.5.2. external

The external maven-repo hosting released artifactsis located at oss.sonatype.org. Use [pw:maven] to
login.

17.6. OpenEngSB Mailinglist

To obtain admin-access for the mailing lists register google-account (if you don't have one), join
mailinglists (http://openengsb.org/community/mailinglists.html) and write mail to one of the current
admins

31

Part IV. Appendix

32

Appendix A. Java Coding Style

A.l. Sun Coding Guidelines

The OpenEngSB Coding Guidelines are based upon the Code Conventions for the Java Programming
L anguage. There are some additions and deviations for this project.

A.1.1. Line length

A line length of 80 was standard 10 years ago, but with increasing screen size and resolution alength
of 120 is more reasonable.

A.1.2. Wrapping

Use the auto-formatter of your IDE. Import the Eclipse Formatter file.
A.1.3. Number of declarations per line
Only one declaration per lineis alowed.

A.1.4. Declaration placement

Declare variables where they are needed. It's easier to read and restricts the scope of variables. Don't
overshadow variables.

A.1.5. Blank lines

The body of a method should not start with a blank line.

A.2. General

A.2.1. File format

Every Java file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of
four spaces, tab-stops are not allowed.

A.2.2. Header

Every source file has to start with this header:

[**

Copyright 2010 OpenEngSB Division, Vienna University of Technol ogy
Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.

You may obtain a copy of the License at

http://ww. apache. org/ i censes/ LI CENSE-2. 0

33

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://dev.openengsb.org/resources/eclipse/formatter.xml

Java Coding Style

Unl ess required by applicable |law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

*/

A.2.3. Duplication

Code duplication hasto be avoided at all costs.

A.2.4. Use guards

Guards are a possihility to reduce the amount of nesting. Heavily nested code is much harder to read.
Bad:

public void foo() {
if (conditionA) {
if (conditionB) {
if (conditionC) {
/1 do some work

}
} else {
t hrow new MyException();
}
}
}
Good:

public void foo() {
if (!conditionA) {
return;

}

if (!conditionB) {
t hrow new MyException();
}

if ('conditionQ {
return;

}

// do sone work

A.2.5. Keep methods short

Methods longer than 40 lines are candidates for refactoring. A method should only do one thing and
has to be easily understandable. The number of arguments should be minimized. A method should
only be at asinglelevel of abstraction.

A.2.6. Use enums

Prefer typesafe enumerations over integer constants.

34

Java Coding Style

A.2.7. Avoid use of static members

Static membersareasign of adesign error becausethey arelike global variables. It'sfineif you declare
aconstant as final abstract of course.

A.2.8. Use fully qualified imports

Don't import org.example.package.*, instead import the needed classes.

A.2.9. Never declare implementation types

A.2.10.

A.2.11.

A.2.12.

A.2.13.

A.2.14.

Use interfaces or the abstract base class instead of concrete implementation classes where possible.
Don't write:

ArrayLi st<String> names = new ArrayList<String>(); ‘
Instead use the interface name:

Li st<String> names = new ArrayList<String>(); ‘
Thisis especialy important in method signatures.
SerialVersionUID

Don't declare serialVersionUID just because your IDE tells you. Have a good reason why you need
it. This can cause bugs that are hard to detect.

Restrict scope of suppressed warnings

If you have to suppress a warning make sure you give it the smallest possible scope. This means you
should never annotate a whole class with @SuppressWarnings. A method may be acceptable but you
should try to annotate the problematic statements instead.

Use String.format()
Use String.format() instead of long concatenation chains which are hard to read.

Array declaration style

Always use

Type[] arrayNaneg; ‘

instead of the C-like

Type arrayNane[]; ‘

Comments

Don't make funny comments, be professional. All comments have to be in English. Comment what
methods do, not how they do it. Do not comment what is already stated in code.

35

Java Coding Style

A.3. Naming

A.3.1. Interfaces

Interfaces are not marked by starting their nameswith |. Thisexposes moreinformation than necessary
and is not Java-like.

A.3.2. Don't abbreviate

Do not use abbreviations if it's not a project wide standard. Long method names are preferable to
inconsistency. With automatic code completion thisisn't a problem anyway.

A.4. No clutter

« Exception/Log Messages have to be concise. Don't end messages with "...".

« Don't overuse FINAL, use it where you have a good reason something has to be final. Although it
doesn't hurt to declare everything asfinal it clutters the code.

» Don't use history tables in source files. Use the SCM system if you are interested in the changes
of afile.

e Don't use the JavaDoc author tag. Also use the SCM system.

« Don't declare unnecessary constructors, especially the empty default constructor.

» Don't make implicit calls explicitly, i.e. calling super(); in every constructor.

» Don't specify modifiersthat are implicit, i.e. don't make methods in interfaces publ i ¢ abstract .
» Dontinitialize fields with null, they are automatically initialized with null.

» Don't use bannersin comments.

« Don't use closing brace comments, i.e. } // end if, they are asign of too long methods.

< Don't comment out code and commit it. This confuses programmers why it is there. Simply delete
it, it's still present in the SCM history.

A.5. Exception Handling

« Don't log and throw. Either a exception should be logged or thrown to be processed at a more
appropriate place.

« Don't swallow exceptions silently. If you have to do it, you have to make a comment stating the
reason.

* Use runtime exceptions where possible.

* Wrap exceptionsin a RuntimeException if you don't want to specify the Exception in your method
signature and you can't handleit.

36

Java Coding Style

Write meaningful exception message.

A.6. Tests

A.6.1. General

Make use of JUnit 4 features, e.g. @T est(expected = SomeException.class)
Tests should not output anything. They have to be automatically verified.
Don't catch exceptions just to fail manually. Declare the method to throw the exception.

Install a shutdown hook for test data files. This assures that they will be deleted and the project
remainsin aclean state.

Use Mockito for mocking.

Tests should have descriptive method names. It should be deducible what will be tested. Bad:
testError().Good: i nval i dl nMessage_Shoul dRet ur nEr r or Response() .

A.6.2. Naming Scheme

The Maven profiles for running the tests are configured to filter based on the naming of the test class.
The package layout is just afurther convenience for the developer for running the tests manually.

Unit Tests test one class/method/feature in isolation from their dependencies by using test doubles
as replacement. They should be fast and need no special environment setup for execution.

Filenames end with Test.java
Located in the normal package structure, i.e. out er. proj ect . package. i nner . pr oj ect . package

Integration Testscombineindividual software modulesto test their interaction with each other. They
do not need a special environment setup for execution.

Filenames end with I T .java
Located inout er . proj ect . package. i t.inner. proj ect. package

User Tests need a special execution environment and thus are not run automatically during any
maven phase.

Filenames end with UT .java

Located inout er . proj ect . package. ut . i nner . proj ect . package

A.7. XML Formatting

A.7.1. File Format

Every XML file has to be UTF-8 encoded and has to use UNIX line endings. |ndentations consist of
TWO spaces, tabstops are not allowed. The line length shouldn't exceed 120 characters.

37

http://code.google.com/p/mockito/

Java Coding Style

A.7.2. Eclipse Settings

If you use Eclipse please choose these settings for your OpenEngSB workspace:

ﬂ Preferences l =l -th

type filter text Editor =T > =

Save Actions -
XML editing preferences. Mote that some preferences may be set on the

Syntax Colerin
4 g Structured Text Editors preference page.

Temnplates
Typing
- Installed JREs Formatting
JUnit Line width: 120
Properties Files Editc [l Split multiple attributes each on a new line
Java EE

["] Align final bracket in multi-line element tags
[¥] Preserve whitespace in tags with PCDATA content

Plug-in Development

Remote Systems

. Run/Debug [] Clear all blank lines
> Server [¥]Insert whitespace before closing ernpty end-tags
. Tasks () Indent using tabs
» Team (@ Indent using spaces
Terminal [J | |- e
> Usage Data Collector Indentation size: 2
Validation Content assist
: Web . -
Wb Senices [¥] Automatically make suggestions
. XDoclet E Prompt when these characters are inserted: <=:
a XML . -
D7D Files Suggestion strategy: Strict ot
XML Catalog Grammar Constraints
a XML Files [¥] Use inferred grammar in absence of DTD/Schema
» | Editor
Yalidation
- XML Schema Files
:» XPath
. XSL m
- - - [Restore Qefaults] [Apply]
@j [0K] ’ Cancel]

Eclipse XML Settings

A.7.3. Recommended Readings
* Clean Code, Robert C. Martin, 2008
« Effective Java Second Edition, Joshua Bloch, 2008

e 7 tipson writing clean code

http://www.garshol.priv.no/blog/105.html

Appendix B. Writing Documentation

This chapter isintended for developers who write documentation. There are no special prerequisites.
Part one describes how a chapter should be structured. Part two discusses how domains and connectors
should be document. Part three describes how Docbook is used at OpenEngSB.

B.1. General Documentation Guidelines
A chapter should consist of these parts:

Introduction

It should explained who the target audience for this chapter is and in what case this chapter should
be read. There should also be a basic summary of what this chapter is about.

Prerequisites

Any prerequisites should belisted. Link to the appropriate chapter or to awebsite to give the reader
agood starting point in case they need to learn something else first.

Context

In the context section the reader should learn in which context this chapter is applicable. If necessary
abbrevations and acronyms used in this chapter can be explained here.

Content
The actual content of this chapter. This should be structured in as many sections as appropriate.
Example
If possible there should be an example to illustrate the points of the chapter.
Common Problems
If there are some known pitfalls or bugs they should be described in this section.
Closing Remarks

In this section the content of the chapter can be summarized once more. The reader should get
information on what to do next.

It is not necessary that every part is a docbook section. Parts can be combined if it seems appropriate.

39

Writing Documentation

B.2. Document a domain or connector

B.2.1. Domain

Each domain getstheir own directory in the user guide at donai ns/ <t he- domai n- name>. The domain-
specific documentation should be put in a file named domai n. xni . The directory will be used to
document connectors for the domain.

The documentation of a domain should at least consist of the following parts:
Descriptien
Describe briefly what the purpose of the Domain is.
Functional interface

The link to the actual javainterface (and any domain models used in the interface) at Github. The
domain interface and model s should have enough Javadoc to explain the usage.

Events

If the domain adds new eventsto the OpenEngSB, thelink to the events package at Github should be
provided. The meaning of each events should be documented through the Javadoc at the actual class.

B.2.2. Connector

A connector for a specific domain should be documented in the domain-specific directory. Add anew
file with the unique name of the connector.

The documentation of a connector should at least conisst of the following parts:
Descriptien
Provide a description of the external tool and its purpose.
External tool configuration

A section on how to configure the actual external tool for usage with the OpenEngSB has to be
provided.

Support for domain interface

Any deviation to the provided functionality of the domain should be documented. E.g a connector
may only implement parts of the domain interface.

B.3. Using Docbook

Thisis not a DocBook manual but rather an explanation what type of docbook tags are used in this
documentation. If you are new to DocBook you should read DocBook 5: The Definitive Guide.

B.3.1. Tags

DocBook has many tags to choose from. This list describes which tags should be used in which cases.

40

http://www.docbook.org/tdg5/en/html/docbook.html

Writing Documentation

Tag

<command>

<envar>

<emphasis>

<filename>

<guibutton>

<guilabel>

<guimenu>

<itemizedlist>

<listitem>

<option>

<orderedlist>

<para>

Description

Used for executables

Used for environment variables

Used to emphasize words in a sentence

Used for files and directories

Used to describe buttons in a GUI

Used to describe labelsin a GUI

Used to describe menusin a GUI

Used for bullet typelists

Used for entriesin alist

Used for options of commands

Used for numbered lists

Used for paragraphs

<programlisting> Used to display code (e.g. XML or

<replaceable>

<ulink>

Java). Generdly it is a good idea to
wrap the contents of this tag in a

CDATA section.

Used for placeholdersin examples

Used for links to external resources

Example

Type <command>|s</command> to get the
contents of the directory.

PATH

This chapter explains only the very basics of
Git.

You can set environment variables in
<filename>~/.profile</filename>.

Press <guibutton>Next</guibutton> to
continue with the process.

Select <guilabel>Copy projects into

workspace</qguilabel>

Go to <guimenu>File</guimenu>,
<guimenu>Import...</guimenu>.

<itemizedlist><listitem>One</
listitem><listitem>Two</listitem></
itemizedlist>

<itemizedlist><listitem>0One</
listitem><listitem>Two</listitem></
itemizedlist>

<command>mvn</command>
<option>clean</option> is used to clean the
project.

<orderedlist><listitem>0One</
listitem><listitem>Two</listitem></
orderedlist>

<para>Thisis a paragraph.</para>

<programlisting><!
[CDATA[System.out.printin("Hello,
world!");]]<</programlisting>

Type <command> <replaceable>/path/to/
maven</replaceable>

You should read <ulink url="http://
www.dochook.org/tdgs/en/html/
docbook.html">DocBook 5: The Definitive
Guide</ulink>.

41

Writing Documentation

Tag Description Example
<userinput> Used for data which is entered by the Type <userinput>n</userinput> to
user overwrite the default values.
<warning> Used for warnings about a chapter <warning><para>This chapter is out of
date.</para></warning>

B.3.1.1. Including an image

Images can be included in this way:

<medi aobj ect >
<i mageobj ect >
<i magedata id="new' fileref="graphics/testclient_mnessage. png"
format ="png" wi dth="400" align="center" />
</ i mageobj ect >
<capti on>Messagi ng</ capti on>
</ medi aobj ect >

B.3.1.2. Using atable

There are two types of tables. Normal tables (<table>) and informal tables (<informaltable>)which
don't have a caption. Using informal tables should be fine most of the time. Example:

<i nf ormal t abl e>
<col group>
<col wi dth="50" />
<col wi dth="100" />
</ col gr oup>
<t head>
<tr>
<t d>
Name
</td>
<t d>
Descri ption
</td>
</tr>
</t head>
<t body>
<tr>
<t d>
tabl e
</td>
<t d>
A table with a caption
</td>
</tr>
<tr>
<t d>
informal t abl e
</td>
<t d>
A table without a caption
</td>
</tr>
</t body>
</informal tabl e>

42

Writing Documentation

B.3.1.3. Generating the documentation

To build the documentation maven with some pluginsisused. The full documentation can be generated
in one simple step:

cd docs

mvn cl ean i nstall -Pdocs

The documentation can be found in docs/ t ar get / docbkx in HTML and PDF format.

43

Appendix C. License

Apache License
Version 2.0, January 2004

http://ww. apache. org/ | i censes/

TERVMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON

1. Definitions.

"Li cense" shall nean the ternms and conditions for use,
reproduction, and distribution as defined by Sections 1 through

9 of this docunent.

"Licensor” shall nean the copyright owner or entity authorized

by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and al
other entities that control, are controlled by, or are under
comon control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect,
to cause the direction or managenment of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nore of the outstanding shares, or (iii) beneficial ownership

of such entity.

"You" (or "Your") shall nean an individual or Legal Entity

exerci sing perm ssions granted by this License.

"Source" formshall nmean the preferred form for neking
nodi fications, including but not limted to software source code,

docunent ati on source, and configuration files.

"Object" formshall mean any formresulting from mechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation

and conversions to other nedia types.

"Work" shall mean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a

copyright notice that is included in or attached to the work

(an exanple is provided in the Appendi x bel ow).

License

"Derivative Wrks" shall nean any work, whether in Source or
oject form that is based on (or derived fron) the Wrk and
for which the editorial revisions, annotations, elaborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nmerely link (or bind by nane) to the interfaces of, the Wrk

and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Wrk and any nodifications or
additions to that Wirk or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity

aut hori zed to submt on behal f of the copyright owner. For the
purposes of this definition,

"submitted" neans any formof electronic, verbal, or witten
conmuni cation sent to the Licensor or its representatives,
including but not limted to comruni cation on el ectronic mailing
lists, source code control systens, and issue tracking systens
that are managed by, or on behal f of, the Licensor for the

pur pose of discussing and inproving the Wrk, but excluding
communi cation that is conspicuously marked or otherw se
designated in witing by the copyright owner as "Not a

Contri bution.™"

"Contributor" shall nmean Licensor and any individual or Lega
Entity on behal f of whoma Contribution has been received by

Li censor and subsequently incorporated within the Wrk

Grant of Copyright License. Subject to the ternms and conditions
of this License, each Contributor hereby grants to You a
perpetual, worl dwi de, non-excl usive, no-charge, royalty-free,

i rrevocabl e copyright |icense to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

oj ect form

Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocabl e
(except as stated in this section) patent |license to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Work, where such license applies only to those patent clains
l'icensabl e by such Contributor that are necessarily infringed by

their Contribution(s) alone or by conbination of their

45

License

Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Wirk or a Contribution incorporated within the Wrk

constitutes direct or contributory patent infringenment, then any
patent |icenses granted to You under this License for that Work

shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any nmedium w th or w thout
nmodi fications, and in Source or Cbject form provided that You

nmeet the follow ng conditions:

(a) You must give any other recipients of the Work or

Derivative Wrrks a copy of this License; and

(b) You nmust cause any nodified files to carry prom nent notices

stating that You changed the files; and

(c) You rmust retain, in the Source form of any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source form of the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Wrks that You distribute
must include a readabl e copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at |least one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Works; or, within a display generated by the
Derivative Works, if and wherever such third-party notices
normal |y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Wirks that You distribute, alongside or as an addendumto
the NOTICE text fromthe Wrk, provided that such additional
attribution notices cannot be construed as nodi fying the

Li cense.

You may add Your own copyright statenent to Your nodifications
and may provide additional or different |icense terns and
conditions for use, reproduction, or distribution of Your

modi fications, or for any such Derivative Wrks as a whol e,

46

License

provi ded Your use, reproduction, and distribution of the Wrk

otherwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state
otherwi se, any Contribution intentionally subnmtted for
inclusion in the Wrk by You to the Licensor shall be under the
terms and conditions of this License, w thout any additiona
ternms or conditions. Notwi thstandi ng the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenment you may have executed with Licensor regarding such

Contri butions.

Trademarks. This License does not grant perm ssion to use the
trade names, tradenmarks, service marks, or product nanes of the
Li censor, except as required for reasonable and customary use
in describing the origin of the Work and reproduci ng the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable |aw or
agreed to in witing, Licensor provides the Wrk (and each
Contributor provides its Contributions) on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied, including, without limtation, any warranties or

condi tions of TITLE, NON | NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ning the appropriateness of using or redistributing the
Work and assume any risks associated with Your exercise of

perm ssi ons under this License.

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
damages for loss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other commercial damages or | osses),
even if such Contributor has been advised of the possibility of

such dammges.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wirrks thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this

Li cense. However, in accepting such obligations, You may act only

47

License

on Your own behal f and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harm ess for any liability
incurred by, or clains asserted against, such Contributor by
reason of your accepting any such warranty or additional

liability.

END OF TERVMS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields encl osed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. W al so reconmend that a
file or class nane and description of purpose be included on the
sane "printed page" as the copyright notice for easier

identification within third-party archives.

Copyright [yyyy] [nane of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
implied. See the License for the specific |anguage governing

permi ssions and |imtations under the License.

48

	Open Engineering Service Bus Documentation
	Table of Contents
	Part I. OpenEngSB Framework
	Chapter 1. What is the Open Engineering Service Bus
	Chapter 2. When to use the OpenEngSB
	2.1. The OpenEngSB as Base Environment
	2.2. Reusing integration Components and Workflows
	2.3. Management Environment
	2.4. Simple Development and Distribution Management
	2.5. Simple Plug-Ins and Extensions

	Chapter 3. Quickstart
	3.1. Writing new projects using the OpenEngSB
	3.2. Writing Domains for the OpenEngSB
	3.3. Writing Connectors for the OpenEngSB

	Chapter 4. Architecture
	4.1. Domain
	4.2. Connector

	Chapter 5. Context Management
	Chapter 6. Persistence in the OpenEngSB
	Chapter 7. Workflows
	7.1. Workflow service
	7.2. Rulemanager
	7.3. Processes

	Chapter 8. External Domains and Connectors
	8.1. Connect With CSharp
	8.2. Proxying
	8.2.1. Proxying internal Connector calls

	8.3. Using JMS proxying
	8.3.1. Proxying internal Connector calls
	8.3.2. Event handling via JMS
	8.3.3. Test JMS Connector with Python Stomppy Client

	Part II. OpenEngSB Available Domains & Connectors
	Chapter 9. Notification Domain
	9.1. Description
	9.2. Functional Interface
	9.3. Connectors
	9.3.1. Email Connector
	9.3.1.1. External Tool Configuration

	Chapter 10. SCM Domain
	10.1. Description
	10.2. Functional Interface
	10.3. Connectors
	10.3.1. Git Connector
	10.3.1.1. External Tool Configuration

	Chapter 11. Issue Domain
	11.1. Description
	11.2. Functional Interface
	11.3. Connectors
	11.3.1. Trac Connector
	11.3.1.1. External Tool Configuration

	Chapter 12. Report Domain
	12.1. Description
	12.2. Functional Interface
	12.3. Connectors
	12.3.1. Plaintext Report Connector
	12.3.1.1. External Tool Configuration

	Part III. OpenEngSB Commiters & Contributors
	Chapter 13. Getting Started as a Developer
	13.1. Getting comfortable with the infrastructure
	13.1.1. Mailing Lists
	13.1.2. Jira Issue Tracker
	13.1.3. Code Repository
	13.1.4. Maven Repository
	13.1.5. Build Server

	13.2. Prerequisites
	13.2.1. Installing Git
	13.2.2. Installing Maven

	13.3. Starting OpenEngSB
	13.4. Using Eclipse
	13.5. Using Other IDEs than Eclipse
	13.6. Git Documentation
	13.6.1. Usage
	13.6.2. Github
	13.6.3. Starting up and configure
	13.6.4. Contributor Workflow
	13.6.5. Commiter Workflow
	13.6.6. Additional Rules

	Chapter 14. How To Create an Internal Connector
	14.1. Prerequisites
	14.2. Creating a new connector project
	14.2.1. Using the Maven Archetype
	14.2.2. Using the gen-connector.sh shell script

	14.3. Project Structure
	14.4. Customizing
	14.5. Integrating the Connector into the OpenEngSB environment

	Chapter 15. How To Create an Internal Domain
	15.1. Prerequisites
	15.2. Creating a new domain project
	15.2.1. Using the Maven Archetype
	15.2.2. Using the gen-domain.sh shell script
	15.2.3. Project structure
	15.2.4. Customizing

	15.3. Integrating the Domain into the OpenEngSB environment
	15.4. Components

	Chapter 16. Prepare and use Non-OSGi Artifacts
	16.1. Use Wrapped Jars
	16.2. Create Wrapped Artifacts
	16.3. Workflow

	Chapter 17. Admin
	17.1. OpenEngSB Infrastructure Server
	17.2. OpenEngSB Build
	17.3. OpenEngSB Issuetracker
	17.4. OpenEngSB git
	17.5. OpenEngSB Maven
	17.5.1. internal
	17.5.2. external

	17.6. OpenEngSB Mailinglist

	Part IV. Appendix
	Appendix A. Java Coding Style
	A.1. Sun Coding Guidelines
	A.1.1. Line length
	A.1.2. Wrapping
	A.1.3. Number of declarations per line
	A.1.4. Declaration placement
	A.1.5. Blank lines

	A.2. General
	A.2.1. File format
	A.2.2. Header
	A.2.3. Duplication
	A.2.4. Use guards
	A.2.5. Keep methods short
	A.2.6. Use enums
	A.2.7. Avoid use of static members
	A.2.8. Use fully qualified imports
	A.2.9. Never declare implementation types
	A.2.10. SerialVersionUID
	A.2.11. Restrict scope of suppressed warnings
	A.2.12. Use String.format()
	A.2.13. Array declaration style
	A.2.14. Comments

	A.3. Naming
	A.3.1. Interfaces
	A.3.2. Don't abbreviate

	A.4. No clutter
	A.5. Exception Handling
	A.6. Tests
	A.6.1. General
	A.6.2. Naming Scheme

	A.7. XML Formatting
	A.7.1. File Format
	A.7.2. Eclipse Settings
	A.7.3. Recommended Readings

	Appendix B. Writing Documentation
	B.1. General Documentation Guidelines
	B.2. Document a domain or connector
	B.2.1. Domain
	B.2.2. Connector

	B.3. Using Docbook
	B.3.1. Tags
	B.3.1.1. Including an image
	B.3.1.2. Using a table
	B.3.1.3. Generating the documentation

	Appendix C. License

