
Open Engineering
Service Bus

Documentation

ii

Table of Contents

I. OpenEngSB Framework .. 1

1. What is the Open Engineering Service Bus .. 2

2. When to use the OpenEngSB .. 3

2.1. The OpenEngSB as Base Environment ... 3

2.2. Reusing integration Components and Workflows ... 3

2.3. Management Environment ... 3

2.4. Simple Development and Distribution Management ... 3

2.5. Simple Plug-Ins and Extensions ... 3

3. Quickstart .. 4

3.1. Writing new projects using the OpenEngSB .. 4

3.2. Writing Domains for the OpenEngSB ... 4

3.3. Writing Connectors for the OpenEngSB ... 4

4. Architecture ... 5

4.1. Domain ... 5

4.2. Connector ... 5

5. Context Management .. 6

6. Persistence in the OpenEngSB .. 7

7. Workflows ... 8

7.1. Workflow service .. 8

7.2. Rulemanager ... 8

7.3. Processes .. 8

8. External Domains and Connectors ... 9

8.1. Connect With CSharp .. 9

8.2. Proxying ... 9

8.3. Using JMS proxying .. 9

II. OpenEngSB Available Domains & Connectors .. 11

9. Notification Domain ... 12

9.1. Description .. 12

9.2. Functional Interface ... 12

9.3. Connectors .. 12

10. SCM Domain ... 13

10.1. Description .. 13

10.2. Functional Interface ... 13

10.3. Connectors .. 13

11. Issue Domain ... 14

11.1. Description .. 14

11.2. Functional Interface ... 14

11.3. Connectors .. 14

12. Report Domain ... 15

12.1. Description .. 15

12.2. Functional Interface ... 15

12.3. Connectors .. 15

III. OpenEngSB Commiters & Contributors ... 16

13. Getting Started as a Developer .. 17

13.1. Getting comfortable with the infrastructure .. 17

Open Engineering Service Bus Documentation

iii

13.2. Prerequisites .. 18

13.3. Starting OpenEngSB .. 18

13.4. Using Eclipse .. 19

13.5. Using Other IDEs than Eclipse ... 19

13.6. Git Documentation ... 19

14. How To Create an Internal Connector ... 22

14.1. Prerequisites .. 22

14.2. Creating a new connector project .. 22

14.3. Project Structure .. 23

14.4. Customizing .. 23

14.5. Integrating the Connector into the OpenEngSB environment 24

15. How To Create an Internal Domain ... 25

15.1. Prerequisites .. 25

15.2. Creating a new domain project ... 25

15.3. Integrating the Domain into the OpenEngSB environment 26

15.4. Components ... 26

16. Prepare and use Non-OSGi Artifacts ... 29

16.1. Use Wrapped Jars .. 29

16.2. Create Wrapped Artifacts ... 29

16.3. Workflow .. 30

17. Admin .. 31

17.1. OpenEngSB Infrastructure Server ... 31

17.2. OpenEngSB Build ... 31

17.3. OpenEngSB Issuetracker .. 31

17.4. OpenEngSB git .. 31

17.5. OpenEngSB Maven ... 31

17.6. OpenEngSB Mailinglist .. 31

IV. Appendix ... 32

A. Java Coding Style ... 33

A.1. Sun Coding Guidelines ... 33

A.2. General .. 33

A.3. Naming .. 36

A.4. No clutter ... 36

A.5. Exception Handling .. 36

A.6. Tests .. 37

A.7. XML Formatting .. 37

B. Writing Documentation .. 39

B.1. General Documentation Guidelines .. 39

B.2. Document a domain or connector ... 40

B.3. Using Docbook ... 40

C. License .. 44

1

Part I. OpenEngSB Framework
This part gives an introduction into the OpenEngSB project and explains its base usage environment and the

concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers

installation, configuration and usage of the administration interface to implement a tool environment according

to your needs.

The target audience of this part are users and developers.

2

Chapter 1. What is the Open Engineering Service
Bus

In engineering environments a lot of different tools are used. Most of these operate on the same domain,

but often interoperability is the limiting factor. For each new project and team member tool integration

has to be repeated again. In general, this ends up with numerous point-to-point connectors between

tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It

simplifies design and implementation of workflows in an engineering team. The engineering team itself

(or a process administrator) is able to design workflows between different tools. The entire description

process happens on the layer of generic domains instead of specific tool properties. This provides an

out of the box solution which allows typical engineering teams to optimize their processes and make

their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of

individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard all integrated tools and

workflows. This offers new ways in notifying managers at the right moment and furthermore allows

a very general, distanced and objective view on a project.

Although this concept is very powerful it cannot solve every problem. The OpenEngSB is not designed

as a general graphical layer over an Enterprise Service Bus (ESB) which allows you to design ALL of

your processes out of the box. As long as you work in the designed domains of the OpenEngSB you

have a lot of graphical support and other tools available making your work extremely easy. But when

leaving the common engineering domains you also leave the core scope of the service bus. OpenEngSB

still allows you to connect your own integration projects, use services and react on events, but you have

to keep in mind that you're working outside the OpenEngSB and "falling back" to classical Enterprise

Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools

already used for your development process, it will integrate them. Our service bus is used to connect

the different tools and design a workflow between them, but not to replace them with yet another

application. For example, software engineers like us love their tools and will fight desperately if you

try to take them away. We like the wheels as they are, but we do not like the way they are put together

at the moment.

3

Chapter 2. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to

make clear in which situations the OpenEngSB can be useful for you.

2.1. The OpenEngSB as Base Environment

OSGi is a very popular integration environment. Instead of delivering one big product the products get

separated into minor parts and deployed within a general envioronment. The problem with this concept

is to get old, well known concepts up and running in the new environment. In addition tools such as

PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as

Karaf allow a richer and easier development. Neverthless, settting up such a system for development

means a lot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

2.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start

from the ground and develop a complete, own environment, only using existing connectors. Using the

OpenEngSB not only connectors but an entire integrated process, workflow and event environment

waits for you. In addition connectors to different tools can not only be adapted to the specific needs,

but also simply replaced by other connectors, using the Domain concept.

2.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this

environment can be added to your project standalone (similar to e.g. Tomcat management console)

you also have the possibility to completely integrate the OpenEngSB management enviornment into

your Apache Wicket application.

2.4. Simple Development and Distribution Management

While typical ESB have to be installed seperately from your application the OpenEngSB is delivered

with your application. Develop your application in the OpenEngSB environment and scripts to embed

your application into the OpenEngSB are provided. In addition easy blending allows to adapt the

OpenEngSB visually to your needs and cooperate design.

2.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven

archetypes Plug-Ins can be created, uploaded and provided to all other OpenEngSB installations or

applications using the OpenEngSB.

4

Chapter 3. Quickstart

As a developer you have basically two ways in which you can use the OpenEngSB. One option is to

use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to

write Plug-Ins (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

3.1. Writing new projects using the OpenEngSB

TBW

3.2. Writing Domains for the OpenEngSB

TBW

3.3. Writing Connectors for the OpenEngSB

TBW

5

Chapter 4. Architecture

This chapter explains the architecture of the OpenEngSB in detail.

4.1. Domain

TBW

4.2. Connector

TBW

6

Chapter 5. Context Management

Each project in the OpenEngSB has its own context to store meta information necessary for running

inside of the OpenEngSB. The context basically is represented as a tree structure with key-value pairs

as leafs.

TBW - how to get initial values into the context when a service instance is created.

TBW - how to do context lookup inside of domain and connectors.

TBW - how to write into the context inside of domain and connectors.

7

Chapter 6. Persistence in the OpenEngSB

The OpenEngSB has a central persistence service, which can be used by any component within in

the OpenEngSB to store data. The service is designed for flexibility and usability for the storage of

relatively small amounts of data with no explicit performance requirements. If special persistence

features need to be used it is recommended to use a specialized storage rather than the general storage

mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)

mechanisms. Instances of the persistence service are created per bundle and have to make sure that data

is stored persistently. If bundles need to share data the common persistence service cannot be used, as it

does not support this feature. The persistence manager is responsible for the management of persistence

service instances per bundle. On the first request from a bundle the persistence manager creates a

persistence service. All later requests from a specific bundle should get the exact same instance of the

persistence service.

The persistence solution of the OpenEngSB was designed to support different possible back-end

database systems. So if a project has high performance or security requirements, which can not be

fulfilled with the default database system used by the persistence service, it is possible to implement

a different persistence back-end. To make this exchange easier a test for the expected behavior of the

persistence service is provided.

http://github.com/openengsb/openengsb/tree/master/core/persistence/src/main/java/org/openengsb/core/persistence/PersistenceService.java
http://github.com/openengsb/openengsb/tree/master/core/persistence/src/main/java/org/openengsb/core/persistence/PersistenceManager.java
http://github.com/openengsb/openengsb/tree/master/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java

8

Chapter 7. Workflows

The OpenEngSB supports the modeling of workflows. This could be done by two different approaches.

First of all a rule-based event approach, by defining actions based on events (and their content) which

were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy

to replace and extend. For long running business processes the secondary workflow method could be

used which is based on processes described in Drools-Flow.

The workflow service takes "events" as input and handles them using a rulebased system (JBoss

Drools). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

7.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected

to the environment (domains and connectors). When an event is fired, the workflow-service spawns a

new session of the rulebase. The session gets populated with references to domain-services and other

helper-objects in form of global variables. A drools-session is running in a sandbox. This means that

the supplied globals are the only way of triggering actions outside the rule-session.

7.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the

rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are

saved separately. All elements share a common collection of import- and global-declarations. These

parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or

function to the rulebase, make sure that all imports are present before. Otherwise the adding of the

elements will fail.

7.3. Processes

TBW - explain Drools-Flow processes.

http://github.com/openengsb/openengsb/tree/master/core/workflow/src/main/java/org/openengsb/core/workflow/WorkflowService.java
http://github.com/openengsb/openengsb/tree/master/core/workflow/src/main/java/org/openengsb/core/workflow/RuleManager.java

9

Chapter 8. External Domains and Connectors
TBW - Introduction

TBW - What is the difference between internal and external domains and connectors.

8.1. Connect With CSharp

TBW - reevaluate for new plugin system.

The CSharp connector is written on basis of the Apache ActiveMQ NMS connector and with help of

the Spring NmsTemplate. The code is checked into the repository and could be found in nonjava/

csharp. There an EngSB.sln file. This project file has been developed with SharpDevelop 3, but is

also tested with VisualStudio 2008 CSharp Express Edition with the .Net Framework 3.5.

8.2. Proxying

The proxy mechanism allows for any method call to be intercepted.

8.2.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceManager for every Domain to instantiate a proxy. An

InvocationHandlerFactory has to be provided for proxying any call. The proxy has to be created via

the normal instantiation mechanism on the website.

8.3. Using JMS proxying

The current JMS Connector allows for internal method calls being redirected via JMS, as well as Events

being raised through jms via an external source.

8.3.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceManager for every Domain to instantiate a proxy. The

proxy has to be created via the normal instantiation mechanism on the website. Whenever now a proxy

method is called the call is marshalled and sent via JMS to a queue named <DomainID>_method_send.

The marshalling is done via JSON. The mapping has the parameters type, which can be Call, Exception

or Return, message, which in case of a method call is a simple serialisation of the arguments and name,

which denotes the name of the method.

After sending the method call via JMS the proxy waits for a return at <DomainID>_method_return. The

return message can use the same parameters as the send serialisation (type, name, message), but name

is ignored. The message parameter is serialised to the correct return type if type is set to RETURN. If

the type is Exception a new JMSException is thrown with the message.

By default a JMS Broker is started on port 6000.

8.3.2. Event handling via JMS

For every Domain found at the start of the OPENEngSB Server JMSConnector starts a listener on

the <DomainID>_event_send queue. The parameters used are type and event. The type parameter is

External Domains and Connectors

10

the class that has to be used to deserialise the event and be used as the argument to raiseEvent. After

the correct class is loaded the content of the event parameter gets deserialised into an instance of the

type parameter. The corresponding raiseEvent method is then called for the domain supported by this

EventListener.

When the Event was processed a message is sent to the <DomainID>_event_return queue with the

type set to RETURN and message set to OK. In case of Exception the type is set to exception and the

message is set to the exception message.

8.3.3. Test JMS Connector with Python Stomppy Client

To test the OPENENGSB JMS implementation with Python please follow the instructions

http://github.com/openengsb/openengsb/tree/master/nonjava/python/PythonClient.txt

11

Part II. OpenEngSB Available
Domains & Connectors

This part gives an overview about the domains and their functionality the OpenEngSB supports out of the box.

Furthermore each connector and necessary external tool configuration is explained.

12

Chapter 9. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email

notification.

9.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

9.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

9.3. Connectors

9.3.1. Email Connector

The email connector is a simple notification connector based on the java mail API.

9.3.1.1. External Tool Configuration

No external tool configuration is necessary.

http://github.com/openengsb/openengsb/blob/master/domains/notification/implementation/src/main/java/org/openengsb/domains/notification/NotificationDomain.java

13

Chapter 10. SCM Domain

The source code management (SCM) domain is the tool domain for all SCM tools, like Git or

Subversion.

10.1. Description

The SCM Domain polls external repositories for changes of content under source control and provides

functionality to copy/export the repository content for further processing.

10.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

10.3. Connectors

10.3.1. Git Connector

The Git Connector is a SCM tool connector for the Git fast version control system.

10.3.1.1. External Tool Configuration

The external Git repository must be anonymously accessible with one of the following protocols:

1. git

2. http

3. ftp

No further configuration is needed.

http://github.com/openengsb/openengsb/blob/master/domains/scm/implementation/src/main/java/org/openengsb/domains/scm/ScmDomain.java
http://git-scm.com/

14

Chapter 11. Issue Domain

The issue domain is the tool domain for all issue tracking tools, like Jira, Trac or Mantis.

11.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

11.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

11.3. Connectors

11.3.1. Trac Connector

The Trac Connector is a issue tool connector for the Trac project management and issue tracker system.

11.3.1.1. External Tool Configuration

The external Trac tool has to be accessible via XmlRpc. For this purpose the XmlRpcPlugin has to be

installed (see http://trac.edgewall.org/wiki/PluginList).

http://github.com/openengsb/openengsb/blob/master/domains/issue/implementation/src/main/java/org/openengsb/domains/issue/IssueDomain.java
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/PluginList

15

Chapter 12. Report Domain

The report domain is the tool domain for report generation and management tools.

12.1. Description

The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports

and a category system for report storage.

12.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

12.3. Connectors

12.3.1. Plaintext Report Connector

The plain text report tool connector is simple implementation of the report domain, which generates

plain text reports.

12.3.1.1. External Tool Configuration

No external configuration is needed.

http://github.com/openengsb/openengsb/blob/master/domains/report/implementation/src/main/java/org/openengsb/domains/report/ReportDomain.java

16

Part III. OpenEngSB
Commiters & Contributors

This part explains how to develop additional domains, connectors and similar parts. In addition it explains the

rules and infrastructure according to which the project is developed.

The target audience of this part are developers.

17

Chapter 13. Getting Started as a Developer

This chapter describes the basic steps to get started as a developer for the OpenEngSB project.

13.1. Getting comfortable with the infrastructure

As any open source project the OpenEngSB development depends on a wide range of different

infrastructural and communication methods to get things done. The following sub-chapters describe

the different tools, their location and usage in the OpenEngSB development process.

13.1.1. Mailing Lists

The most important communication medium for the OpenEngSB development team is email. Mostly

all of the vital design, architectural and infrastructural decisions are discussed on the OpenEngSB

developer list. Therefore, the first step to get involved into the development of the OpenEngSB is to

register to the Google Groups OpenEngSB Developer Mailing List [http://groups.google.com/group/

openengsb-dev] and say hello world.

While notifications from the Hudson Build Server, about code commits and Jira issues are vital

for the OpenEngSB core developer, they may not be as interesting for you. If you get annoyed

by the automatically generated notification mails ignore all mails from openengsb@gmail.com

and noreply@github.com to openengsb-dev@googlegroups.com. Please remember it is important to

configure both, to and from in your filter. Both addresses will also send notifications directly to you

which are important and should not be ignored!

13.1.2. Jira Issue Tracker

All issues are stored within a Jira instance reachable at issues.openengsb.org [http://

issues.openengsb.org/jira/browse/OPENENGSB]. Please use the issue tracker to keep track of all bugs,

ideas and new features you're currently working or of which you think they might be interesting.

13.1.3. Code Repository

As for any open source project the source code is public available. We've chosen Github [http://

github.com] for this task. The project is available at github.com/openengsb/openengsb [http://

github.com/openengsb/openengsb].

As explained later within this document Github is not only used to store our code, but also for

collaboration, code review and patch-tracking.

13.1.4. Maven Repository

For the moment the OpenEngSB artifacts are not stored at maven.central, but in an own Nexus maven

repository available at maven.openengsb.org [http://maven.openengsb.org/nexus]. If any additional

artifacts are required currently not at any maven repository we can host them on the server. Please

simply write to the mailing list which artifact is required and provide the artifact and the pom GAF

parameters. Please always validate if we are allowed to redeploy the artifact.

http://groups.google.com/group/openengsb-dev
http://groups.google.com/group/openengsb-dev
http://groups.google.com/group/openengsb-dev
http://issues.openengsb.org/jira/browse/OPENENGSB
http://issues.openengsb.org/jira/browse/OPENENGSB
http://issues.openengsb.org/jira/browse/OPENENGSB
http://github.com
http://github.com
http://github.com
http://github.com/openengsb/openengsb
http://github.com/openengsb/openengsb
http://github.com/openengsb/openengsb
http://maven.openengsb.org/nexus
http://maven.openengsb.org/nexus

Getting Started as a Developer

18

13.1.5. Build Server

The master and integration branch of the OpenEngSB repository are watched and built by a

Hudson build server instance available at build.openengsb.org [http://build.openengsb.org/hudson/].

Notifications about failures are directly send to the OpenEngSB developer list.

13.2. Prerequisites

First of all the latest JDK has to be installed on the system and the JAVA_HOME variable has to be set

accordingly. All further steps are described in the subsections of this chapter.

13.2.1. Installing Git

It is assumed that Git is installed. For Linux your distribution provides already a package for git. Please

use the package manager of your distribution (apt, yum, pacman, ...) to install it. For MAC binaries are

available at git-scm.com. For MS users cygwin [www.cygwin.com] or msysgit [code.google.com/p/

msysgit]. After installing, set at least the following variables:

 git config --global user.name "Firstname Lastname"

 git config --global user.email user@example.com

 git config --global core.autcrlf input

13.2.2. Installing Maven

Finally download Apache Maven3 and unpack it. Add the path of the maven binary to your PATH

variable. Furthermore you should set the MAVEN_OPTS environment variable to allow Maven to use

more RAM. If you don't you'll get Out Of Memory errors.

 export PATH=$PATH:/path/to/maven/bin

 export MAVEN_OPTS='-Xmx1024M -XX:MaxPermSize=512m'

Add these commands to ~/.bashrc to make the settings permanent.

13.3. Starting OpenEngSB

The next step is to get the OpenEngSB source by checking out the current master using git:

 git clone git://github.com/openengsb/openengsb.git

Now start the OpenEngSB by executing

http://build.openengsb.org/hudson/
http://build.openengsb.org/hudson/
git-scm.com
www.cygwin.com
www.cygwin.com
code.google.com/p/msysgit
code.google.com/p/msysgit
code.google.com/p/msysgit

Getting Started as a Developer

19

 mvn clean install pax:provision

This command builds, tests and runs the OpenEngSB right from your command-line. Executing the

following command will shutdown it again:

 shutdown

13.4. Using Eclipse

Eclipse had been chosen by the OpenEngSB team as the main development environment. After

checkout the code the following command creates the required Eclipse project files:

 mvn install

 mvn eclipse:eclipse

Start Eclipse and select any workspace. The folder eclipse-workspace is ignored in the OpenEngSB

project structure for this purpose. But you can choose any other directory if you prefer. At the

preference page go to Java/Build Path/Classpath Variables and create a new M2_REPO pointing to

~/.m2/repository. Now use File, Import..., Existing Projects into Workspace. As the root directory

select the root of the OpenEngSB source. Eclipse will list several projects and for now it's best to

import them all by clicking Finish.

At openengsb/etc/eclipse/ eclipse configuration files for formatting and Checkstyle can be found.

These files should be used.

13.5. Using Other IDEs than Eclipse

Basically, the OpenEngSB is developed in plain Java, which means any other IDE than Eclipse can be

used too. While there are tools for most IDEs to use Checkstyle, but non of it supports the formatting

file of the OpenEngSB. Please use Checkstyle, which automatically validates the eclipse formatting

rules too.

13.6. Git Documentation

13.6.1. Usage

First of all this chapter explains only the very basics of Git and only that parts directly relevant for the

development of the OpenEngSB project, but not the entire idea and possibilities of Git. Please read

some tutorials first to get how to work with Git and see this chapter more as an summary! You may

also take a look at the Git Documentation Page and the Pro Git Book.

http://git-scm.com/documentation/
http://progit.org/book/

Getting Started as a Developer

20

13.6.2. Github

OpenEngSB is developed at github.com. Please create an account there and explore its features. Specify

your real name in the admin tab and add a picture. This makes it easier to associate your commits to you.

13.6.3. Starting up and configure

Before starting to work with Git some settings should be applied to Git. Therefore simply execute the

following commands.

git config --global user.name "Firstname Lastname"

git config --global user.email user@example.com

git config --global color.ui "auto"

git config --global pack.threads "0"

git config --global diff.renamelimit "0"

git config --global core.autocrlf "input"

Additionally execute the special settings for github as could be found on github in the "Account

Settings" tab is a point "Global git config information". Please use the two git commands described

there

git config --global github.user username

git config --global github.token token

If you don't already have an SSH key you can create one by executing ssh-keygen Simply answer all

questions from the application with "enter" without enter any values. Afterwards the content of the

id_rsa.pub file from your ~/.ssh/ directory should be submitted to github (Account Settings/SSH

public keys).

13.6.4. Contributor Workflow

Contributor are all developer who like to contribute to the OpenEngSB project, but not have commit

rights to openengsb/openengsb.

Please start by choose or create a new issue. Now create a new fork of the OpenEngSB

at Github (if you've not done already so). Clone you're fork, but also add the original

openengsb repository as remote repository. Please create a new branch named OPENENGSB-

ISSUE_NUMBER_YOURE_WORKING_ON. Optionally append /DESCRIPTION. This is the

OpenEngSB schema for naming branches and we'll really appreciate if you work according to it. In

addition create the branch based on the origin/master oder origin/integration and not the branches of

your fork. In this case you don't have to bother with updates of these branches in the OpenEngSB.

Now hack, commit and push as you like. If you think you're finished execute the etc/scripts/pre-

push.sh script validating your code, tests, licenses and so on. If everything works without errors create

a Github pull request on Github, between the master or integration branch (depending on where you've

created your branch on) and your branch. In addition it will help if you add the link to the pull request to

the issue you're working on. A commiter will tend as fast as possible to your request and give feedback

or directly merge your commit into the integration/master branch.

http://github.com/

Getting Started as a Developer

21

13.6.5. Commiter Workflow

The only difference between a commiter and a contributor is that he has to watch and merge branches

of contributors. If a commiter is happy with the work of a contributor. Comments and other discussions

should be done on the mailing list and/or via the Github review system and pull requests.

In addition commiters typically do not create forks but rather create their branches directly in the

OpenEngSB repository. This is done because the repository is covered by the OpenEngSB build server

and in addition keeps everything closer together.

13.6.6. Additional Rules

1. (Contributor/Committer) All development is done in forks (also of the core developers) One

exception to this rule exists: Small fixes and maintenance work which is NOT related to a new

feature and does not exceed 2 commits should be cherry-picked into the master directly.

2. Contributor/Committer) Rebase is not dead (although we use merges). Never ever commit local

merges. You still should develop in local dev branches and rebasing them with the upstream

branches. Only if nobody else has access to your fork you can be sure that nobody changed it!

3. (Committer) If merging branches from forked repositories ALWAYS use the --no-ff option for

merges; this will always create a merge node (even if a fast-forward merge is possible). This is

required to create a clear and consistent history!

4. Avoid backward merges from the master and keep feature branches small! This does not mean that

backward merges from master are forbidden. But they should not be done too often, since they

create a history not easy to read. Please use the method described on this page (with --no-ff --

no-commit) to reduce the number of merge nodes.

5. Use meaningful feature branch names. Using the merge history in the master you can easily follow

the development of features. But this requires (maybe long) good names! In addition, always start

with OPENENGSB-NUMBER of the issue you're working on. Try to always do work based on

issues. If no issue covers what you're doing create one.

22

Chapter 14. How To Create an Internal Connector

This chapter describes how to implement a connector for the OpenEngSB environment. A connector

is an adapter between an external tool and the OpenEngSB environment. Every connector belongs to

a domain which defines the common interface of all its connectors. This means that the connector is

responsible to translate all calls to the common interface to the externally provided tool.

14.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector then

Section 4.1, “Domain” is a good starting point. If there's already a matching domain for this tool it is

strongly recommended to use it. But if this tool requires a new domain it has to be created. This is also

described in (TODO link to developer.howto.internal.domain).

14.2. Creating a new connector project

To take the burden of the developer creating the initial boilerplate code and configuration, a Maven

archetype is provided for creating the initial project structure. Furthermore, if the new connector is

developed inside of the OpenEngSB repository, a shell script can be found at etc/scripts/gen-

connector.sh for further help in creating a new connector project.

14.2.1. Using the Maven Archetype

TBW - explain all variables

14.2.2. Using the gen-connector.sh shell script

Calling the script should be done from the domain-specific directory. I.e. if your are developing a

new connector for the Notification-Domain your current directory should be domains/notification.

Inside your favourite shell execute the script.

notification $../../etc/scripts/gen-connector.sh

The script tries to guess as much as possible from your current location and previous input. Guessed

values are displayed in brackets. If the guess is what you want, simply acknowledge with Return. The

following output has been recorded by executing the script in the domains/notification directory:

Domain Name (is notification): <Enter>

Domain Interface (is NotificationDomain): <Enter>

Connector Name: twitter <Enter>

Version (is 1.0.0-SNAPSHOT): <Enter>

Project Name (is OpenEngSB :: Domains :: Notification :: Twitter): <Enter>

Only the connector name was set, everything else has been guessed correctly by the script. After this

inputs the Maven Archetype gets called and may ask you for further inputs. You can simply hit Return

each time, because the values have been already set by the script. If the script finishes successfully the

new connector project has been created and you may start implementing.

How To Create an Internal Connector

23

14.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

-- pom.xml

-- src

 -- main

 -- java

 | -- org

 | -- openengsb

 | -- domains

 | -- notification

 | -- twitter

 | -- internal

 | | -- MyServiceImpl.java

 | | -- MyServiceInstanceFactory.java

 | -- MyServiceManager.java

 -- resources

 -- META-INF

 | -- spring

 | -- connector-context.xml

 -- OSGI-INF

 -- l10n

 -- bundle_de.properties

 -- bundle.properties

The MyServiceImpl class implements the interface of the domain and thus is the communication

link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run

the end user) enough information on how to configure a connector, the MyServiceInstanceFactory

class provides the OpenEngSB with meta information for configuring and functionality for creating

and updating a connector instances. The MyServiceManager class connects connector instances

with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as OSGi

services and adds necessary meta information to each instance. Since the basic functionality is

mostly similar for all service managers, the MyServiceManager class extends a common base class

AbstractServiceManager. In addition the AbstractServiceManager also persists the configuration

of each connector, so that the connector instances can be restored after a system restart.

TBW - Spring DM

The OpenEngSB has been built with localization in mind. The Maven Archetype already generates

two bundle*.properties files, one for English (bundle.properties) and one for the German

(bundle_de.properties) language. Each connector has to provide localization through the properties

files for service and attributes text values. This includes localization for names, descriptions, attribute

validators, option values and more. For convenience the BundleStrings class is provided on all method

calls where text is needed for user representation for a specific locale.

14.4. Customizing

TBW add attributes, validation, ...

How To Create an Internal Connector

24

14.5. Integrating the Connector into the OpenEngSB
environment

TBW - add in integrationtest

25

Chapter 15. How To Create an Internal Domain
This chapter describes how to implement a domain for the OpenEngSB environment. A domain

provides a common interface and common events on how to interact with connectors for this domain.

For a better description of what a domain exactly consists of, take a look at the architecture guide

Chapter 4, Architecture.

15.1. Prerequisites

In case it isn't known what a domain is and how it defines the interface and events for connectors, then

Chapter 4, Architecture is a good starting point.

15.2. Creating a new domain project

To get developers started creating a new domain a Maven archetype is provided for creating the initial

project structure. Furthermore, if the new domain is developed in the OpenEngSB repository, a shell

script can be found at etc/scripts/gen-domain.sh as further convenience.

15.2.1. Using the Maven Archetype

TBW - explain all variables

15.2.2. Using the gen-domain.sh shell script

The script should be executed from the domains directory in your OpenEngSB repository.

domains $../etc/scripts/gen-domain.sh

You'll be asked to fill i a few variables the script needs to create the initial project structure. Based

on your input, the script tries to gues further values. Guessed values are displayed in brackets. If the

guess is correct, simply acknowledge with Return. As example, the following output has been recorded

while creating the Test domain:

Domain Name (is mydomain): test <Enter>

Version (is 1.0.0-SNAPSHOT): <Enter>

Prefix for project names (is OpenEngSB :: Domains :: Test): <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed by the script. After

giving the inputs, the Maven archetype gets executed and may ask for further inputs. You can simply

hit Return, as the values have been already correctly set by the script. If the script finishes successfully

two new Maven projects, the domain parent and domain implementation project, have been created

and setup with a sample implementation for a domain.

15.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

-- implementation

| -- pom.xml

How To Create an Internal Domain

26

| -- src

| -- main

| | -- java

| | -- org

| | -- openengsb

| | -- domains

| | -- test

| | -- MyDomain.java

| | -- MyDomainEvents.java

| | -- MyDomainProvider.java

| -- resources

| -- META-INF

| | -- spring

| | -- notification-context.xml

| -- OSGI-INF

| -- l10n

| -- bundle_de.properties

| -- bundle.properties

-- pom.xml

TBW - explain structure

Although the generated domain does in effect nothing, you can already start the OpenEngSB for testing

with mvn clean install pax:provision and the domain will be automatically be picked up and

started.

TBW - Spring DM

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. E.g.

the Maven Archetype already creates to bundle*.properties files, one for English (bundle.properties)

and one for the German (bundle_de.properties) language. Each connector has to provide localization

through the properties files. For domains, this only means localization for a name and description of

the domain itself.

15.2.4. Customizing

TBW

15.3. Integrating the Domain into the OpenEngSB environment

TBW

15.4. Components

1. Domain interface - This is the interface that connectors of that domain must implement. Operations

that connectors should provide, are specified here. Events that are raised by this Domain in

unexpected fashion (e.g new commit in scm system) are specified on the Interface. The Raise

Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation

is put on a method the events that are specified through the annotation are raised in sequence upon

a call.

2. Domain event interface - This is the interface that the domain provides for its connectors to send

events into the OpenEngSB. The event interface contains a raiseEvent(SomeEvent event) method

for each supported event type.

How To Create an Internal Domain

27

3. Domain Provider - The domain provider is a service that provides information about the domain

itself. It is used to determine which domains are currently registered in the environment. There is

an abstract class, that takes over most of the setup.

4. Spring context - There are three services, that must be registered with the OSGi service-

environment. First there is the domainprovider of course. Moreover the domain must provide a

kind of connector itself, since it must be able to handle service calls and redirect it to the default-

connector specified in the current context. And finally the domain provides an event interface

for its connectors, which can be used by them to send events into the OpenEngSB. The default

implementation of this event interface simply forwards all events sent through the domain to the

workflow service. But domains can also provide their own implementation of their event interface

and add data to events or perform other tasks. There is a beanfactory that creates a Java-Proxy that

can be used as ForwardService both for the forwarding of service calls from domain to connector

and for the forwarding of events to the workflow service. The service call ForwardService looks

up the default-connector for the specified domain in the current context and forwards the method-

call right to it. The event forward service simply forwards all events to the workflow service of

the OpenEngSB.

<osgi:service>

 <osgi:interfaces>

 <!-- Every Connector must be registered with the Domain-interface -->

 <value>org.openengsb.core.common.Domain</value>

 <!-- The domain-interface goes here-->

 <value>org.openengsb.domains.notification.NotificationDomain</value>

 </osgi:interfaces>

 <osgi:service-properties>

 <!-- The convention for the service-id is "domains.<domain-name>" -->

 <entry key="id" value="domains.notification" />

 <!-- To allow other services (e.g. workflow) to distinguish the forward-service

 from other connector-instances, this attribute must be set to "domain" -->

 <entry key="openengsb.service.type" value="domain" />

 </osgi:service-properties>

 <!-- use the bean-factory to generate the forward-service -->

 <bean class="org.openengsb.core.common.DefaultDomainProxyFactoryBean">

 <!-- Need to specify the domain-interface again -->

 <property name="domainInterface">

 <value>org.openengsb.domains.notification.NotificationDomain</value>

 </property>

 <!-- this is used as a lookup-key in the context -->

 <property name="domainName" value="NotificationDomain" />

 <!-- reference to the context-service (obtained below) -->

 <property name="context" ref="contextService" />

 </bean>

</osgi:service>

<osgi:service>

 <osgi:interfaces>

 <!-- The common domain event marker interface, each domain events interface has to

 extend -->

 <value>org.openengsb.core.common.DomainEvents</value>

 <!-- The specific event interface containing the raiseEvent methods -->

 <value>org.openengsb.domains.notification.NotificationDomainEvents</value>

 </osgi:interfaces>

 <osgi:service-properties>

 <!-- The convention for the service-id is "domains.<domain-name>.events" -->

 <entry key="id" value="domains.notification.events" />

 <entry key="openengsb.service.type" value="domain-events" />

 </osgi:service-properties>

 <!-- the default implementation of the event interface is provided by this class,

How To Create an Internal Domain

28

 which generates a proxy that forwards all events to the workflow service,

 obtained below -->

 <bean class="org.openengsb.core.events.DomainEventsProxyFactoryBean">

 <property name="domainEventInterface">

 <!-- the domain event interface (same as above in the osgi:interfaces section -->

 <value>org.openengsb.domains.notification.NotificationDomainEvents</value>

 </property>

 <property name="workflowService" ref="workflowService" />

 </bean>

</osgi:service>

<osgi:reference id="workflowService"

 interface="org.openengsb.core.workflow.WorkflowService" />

<osgi:reference id="contextService"

 interface="org.openengsb.core.common.context.ContextService" />

29

Chapter 16. Prepare and use Non-OSGi Artifacts

16.1. Use Wrapped Jars

Basically, wrapped JARs do not differ in any way from basic Maven artifacts, besides that they are

deployable in OSGi environments. If it is required to use these artifacts in OpenEngSB nothing specific

has to be done. All artifacts in the wrapped directory are deployed in a Maven repository which is

added to the root POM. Therefore these artifacts can be used directly. In any case you like to build these

artifacts on your own point your console to the wrapped directory and execute mvn clean install.

This will install the artifacts in the local Maven repository and make them available for the application.

16.2. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1. In case that no already wrapped library is available in the public repositories a package has to be

created. While there are packages available to generate the project they are not required. Most of

the work is already abstracted into the root-pom of the wrapped directory. Therefore the project

should be created manually. First of all create a folder with the name of the project you like to wrap.

Typically the groupId of the bundle to wrap is sufficient. For example, for a project wrapping all

Wicket bundles the folder org.apache.wicket is created.

2. As a next step add the newly created folder as a module to the wrapped/pom.xml file in the module

section. For the formerly created Wicket project org.apache.wicket should be added to the module

section.

3. Now create a pom.xml file and a osgi.bnd file in the newly created project folder.

4. The pom.xml contains the basic project information. As parent for the project the wrapped/pom.xml

should be used. Basically for every wrapped jar the project has the following structure:

<?xml version="1.0" encoding="UTF-8"?>

<!--

OPENENGSB LICENSE

-->

<project>

 <parent>

 <groupId>org.openengsb.wrapped</groupId>

 <artifactId>openengsb-wrapped</artifactId>

 <version>1</version>

 </parent>

 <properties>

 <bundle.symbolicName>wrapped_jar_group_id</bundle.symbolicName>

 <wrapped.groupId>wrapped_jar_group_id</wrapped.groupId>

 <wrapped.artifactId>wrapped_jar_artifact_id</wrapped.artifactId>

 <wrapped.version>wrapped_jar_version</wrapped.version>

 <bundle.namespace>${wrapped.groupId}</bundle.namespace>

 </properties>

 <modelVersion>4.0.0</modelVersion>

 <groupId>${wrapped.groupId}</groupId>

 <artifactId>${parent.groupId}.${wrapped.groupId}</artifactId>

Prepare and use Non-OSGi Artifacts

30

 <version>${wrapped.version}</version>

 <name>${bundle.symbolicName}</name>

 <packaging>bundle</packaging>

 <dependencies>

 <all_jars_which_should_be_embedded />

 </dependencies>

</project>

5. The osgi.bnd file contains the OSGi specific statements for the maven-bundle-plugin. While the

default export and import are already handled in the root pom project specific settings have to be

configured here. For example all packages within the bundle-namespace are always exported. This

is for most scenarios sufficient. In addition all dependencies found are automatically imported as

required. This is generally not desired. Instead the parts of the library which have to be imported

should be defined separately. The following listing gives a short example how such a osgi.bnl file

can look like. For a full list of possible commands see the maven-bundle-plugin documentation.

#

OPENENGSB LICENSE

#

Embed-Dependency: *;scope=compile|runtime;type=!pom;inline=true

Import-Package: sun.misc;resolution:=optional,\

javax.servlet;version="[2.5.0, 3.0.0)",\

*;resolution:=optional

16.3. Workflow

The OpenEngSB typically does not have to modify anything within this directory. In addition all

artifacts in this part are independent of the typical OpenEngSB build and deploy life-cycle. The

versions within these artifacts change completely independent of the OpenEngSB. Therefore this

directory and its subprojects are not entered within the module section of the root pom! Instead, if it is

really required to build them (e.g. if a new artifact is added) the maven commands have to be executed

directly in the wrapped sub-directory.

If a developer adds a new library in this folder it is NOT directly available to all other developers. For

testing it is possible that the other developers build the wrapped directory independently. Nevertheless,

the proposed solution is to inform a project admin about the new library in you branch. The admin

can simply deploy (using maven clean install deploy) your artifacts to the maven repositories.

Afterwards the wrapped artifacts are downloaded for all other developers during the build process.

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

31

Chapter 17. Admin
see http://openengsb.org/team-list.html

17.1. OpenEngSB Infrastructure Server

The main server hosting our selfmaintained infrastructure runs Ubuntu Linux and is hosted under the

domain "openengsb.org". The server is mainained remotely via SSH [pw:server].

An apache2 server processes all requests and forwards it to the corresponding service. The config-

file that connects the subdomains to the corresponding services is located in /etc/apache2/sites-

enabled/000-default.

This forwards point to a directory in /var/www that redirects the browser to the correct page (like

build.openengsb.org -> build.openengsb.org/hudson) The tomcat-server for the homepage is located

in /var/opt/tomcat. JIRA is located in /var/opt/atlassian-jira-enterprise-4.1.2/ Further all passwd-files

to control http-access are located in /etc/apache2

17.2. OpenEngSB Build

Hudson is accessible at http://build.openengsb.org. To become an admin create account and write mail

to one of the current admins.

17.3. OpenEngSB Issuetracker

JIRA is accessible at http://issues.openengsb.org. To become an admin create account and write mail

to one of the current admins.

17.4. OpenEngSB git

The github is located at http://git.openengsb.org. To become an admin create a github-account (if you

don't have one) and write mail to one of the current admins.

17.5. OpenEngSB Maven

17.5.1. internal

The internal maven-repo is accessible at maven.openengsb.org. Use [pw:nexus] to login.

17.5.2. external

The external maven-repo hosting released artifacts is located at oss.sonatype.org. Use [pw:maven] to

login.

17.6. OpenEngSB Mailinglist

To obtain admin-access for the mailing lists register google-account (if you don't have one), join

mailinglists (http://openengsb.org/community/mailinglists.html) and write mail to one of the current

admins

32

Part IV. Appendix

33

Appendix A. Java Coding Style

A.1. Sun Coding Guidelines

The OpenEngSB Coding Guidelines are based upon the Code Conventions for the Java Programming

Language. There are some additions and deviations for this project.

A.1.1. Line length

A line length of 80 was standard 10 years ago, but with increasing screen size and resolution a length

of 120 is more reasonable.

A.1.2. Wrapping

Use the auto-formatter of your IDE. Import the Eclipse Formatter file.

A.1.3. Number of declarations per line

Only one declaration per line is allowed.

A.1.4. Declaration placement

Declare variables where they are needed. It's easier to read and restricts the scope of variables. Don't

overshadow variables.

A.1.5. Blank lines

The body of a method should not start with a blank line.

A.2. General

A.2.1. File format

Every Java file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of

four spaces, tab-stops are not allowed.

A.2.2. Header

Every source file has to start with this header:

/**

 Copyright 2010 OpenEngSB Division, Vienna University of Technology

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://dev.openengsb.org/resources/eclipse/formatter.xml

Java Coding Style

34

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

 */

A.2.3. Duplication

Code duplication has to be avoided at all costs.

A.2.4. Use guards

Guards are a possibility to reduce the amount of nesting. Heavily nested code is much harder to read.

Bad:

public void foo() {

 if (conditionA) {

 if (conditionB) {

 if (conditionC) {

 // do some work

 }

 } else {

 throw new MyException();

 }

 }

}

Good:

public void foo() {

 if (!conditionA) {

 return;

 }

 if (!conditionB) {

 throw new MyException();

 }

 if (!conditionC) {

 return;

 }

 // do some work

}

A.2.5. Keep methods short

Methods longer than 40 lines are candidates for refactoring. A method should only do one thing and

has to be easily understandable. The number of arguments should be minimized. A method should

only be at a single level of abstraction.

A.2.6. Use enums

Prefer typesafe enumerations over integer constants.

Java Coding Style

35

A.2.7. Avoid use of static members

Static members are a sign of a design error because they are like global variables. It's fine if you declare

a constant as final abstract of course.

A.2.8. Use fully qualified imports

Don't import org.example.package.*, instead import the needed classes.

A.2.9. Never declare implementation types

Use interfaces or the abstract base class instead of concrete implementation classes where possible.

Don't write:

ArrayList<String> names = new ArrayList<String>();

Instead use the interface name:

List<String> names = new ArrayList<String>();

This is especially important in method signatures.

A.2.10. SerialVersionUID

Don't declare serialVersionUID just because your IDE tells you. Have a good reason why you need

it. This can cause bugs that are hard to detect.

A.2.11. Restrict scope of suppressed warnings

If you have to suppress a warning make sure you give it the smallest possible scope. This means you

should never annotate a whole class with @SuppressWarnings. A method may be acceptable but you

should try to annotate the problematic statements instead.

A.2.12. Use String.format()

Use String.format() instead of long concatenation chains which are hard to read.

A.2.13. Array declaration style

Always use

 Type[] arrayName;

instead of the C-like

Type arrayName[];

A.2.14. Comments

Don't make funny comments, be professional. All comments have to be in English. Comment what

methods do, not how they do it. Do not comment what is already stated in code.

Java Coding Style

36

A.3. Naming

A.3.1. Interfaces

Interfaces are not marked by starting their names with I. This exposes more information than necessary

and is not Java-like.

A.3.2. Don't abbreviate

Do not use abbreviations if it's not a project wide standard. Long method names are preferable to

inconsistency. With automatic code completion this isn't a problem anyway.

A.4. No clutter

• Exception/Log Messages have to be concise. Don't end messages with "...".

• Don't overuse FINAL, use it where you have a good reason something has to be final. Although it

doesn't hurt to declare everything as final it clutters the code.

• Don't use history tables in source files. Use the SCM system if you are interested in the changes

of a file.

• Don't use the JavaDoc author tag. Also use the SCM system.

• Don't declare unnecessary constructors, especially the empty default constructor.

• Don't make implicit calls explicitly, i.e. calling super(); in every constructor.

• Don't specify modifiers that are implicit, i.e. don't make methods in interfaces public abstract.

• Don't initialize fields with null, they are automatically initialized with null.

• Don't use banners in comments.

• Don't use closing brace comments, i.e. } // end if, they are a sign of too long methods.

• Don't comment out code and commit it. This confuses programmers why it is there. Simply delete

it, it's still present in the SCM history.

A.5. Exception Handling

• Don't log and throw. Either a exception should be logged or thrown to be processed at a more

appropriate place.

• Don't swallow exceptions silently. If you have to do it, you have to make a comment stating the

reason.

• Use runtime exceptions where possible.

• Wrap exceptions in a RuntimeException if you don't want to specify the Exception in your method

signature and you can't handle it.

Java Coding Style

37

• Write meaningful exception message.

A.6. Tests

A.6.1. General

• Make use of JUnit 4 features, e.g. @Test(expected = SomeException.class)

• Tests should not output anything. They have to be automatically verified.

• Don't catch exceptions just to fail manually. Declare the method to throw the exception.

• Install a shutdown hook for test data files. This assures that they will be deleted and the project

remains in a clean state.

• Use Mockito for mocking.

• Tests should have descriptive method names. It should be deducible what will be tested. Bad:

testError(). Good: invalidInMessage_ShouldReturnErrorResponse().

A.6.2. Naming Scheme

The Maven profiles for running the tests are configured to filter based on the naming of the test class.

The package layout is just a further convenience for the developer for running the tests manually.

• Unit Tests test one class/method/feature in isolation from their dependencies by using test doubles

as replacement. They should be fast and need no special environment setup for execution.

• Filenames end with Test.java

• Located in the normal package structure, i.e. outer.project.package.inner.project.package

• Integration Tests combine individual software modules to test their interaction with each other. They

do not need a special environment setup for execution.

• Filenames end with IT.java

• Located in outer.project.package.it.inner.project.package

• User Tests need a special execution environment and thus are not run automatically during any

maven phase.

• Filenames end with UT.java

• Located in outer.project.package.ut.inner.project.package

A.7. XML Formatting

A.7.1. File Format

Every XML file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of

TWO spaces, tabstops are not allowed. The line length shouldn't exceed 120 characters.

http://code.google.com/p/mockito/

Java Coding Style

38

A.7.2. Eclipse Settings

If you use Eclipse please choose these settings for your OpenEngSB workspace:

Eclipse XML Settings

A.7.3. Recommended Readings

• Clean Code, Robert C. Martin, 2008

• Effective Java Second Edition, Joshua Bloch, 2008

• 7 tips on writing clean code

http://www.garshol.priv.no/blog/105.html

39

Appendix B. Writing Documentation
This chapter is intended for developers who write documentation. There are no special prerequisites.

Part one describes how a chapter should be structured. Part two discusses how domains and connectors

should be document. Part three describes how Docbook is used at OpenEngSB.

B.1. General Documentation Guidelines

A chapter should consist of these parts:

•Introduction

It should explained who the target audience for this chapter is and in what case this chapter should

be read. There should also be a basic summary of what this chapter is about.

•Prerequisites

Any prerequisites should be listed. Link to the appropriate chapter or to a website to give the reader

a good starting point in case they need to learn something else first.

•Context

In the context section the reader should learn in which context this chapter is applicable. If necessary

abbrevations and acronyms used in this chapter can be explained here.

•Content

The actual content of this chapter. This should be structured in as many sections as appropriate.

•Example

If possible there should be an example to illustrate the points of the chapter.

•Common Problems

If there are some known pitfalls or bugs they should be described in this section.

•Closing Remarks

In this section the content of the chapter can be summarized once more. The reader should get

information on what to do next.

It is not necessary that every part is a docbook section. Parts can be combined if it seems appropriate.

Writing Documentation

40

B.2. Document a domain or connector

B.2.1. Domain

Each domain gets their own directory in the user guide at domains/<the-domain-name>. The domain-

specific documentation should be put in a file named domain.xml. The directory will be used to

document connectors for the domain.

The documentation of a domain should at least consist of the following parts:

•Description

Describe briefly what the purpose of the Domain is.

•Functional interface

The link to the actual java interface (and any domain models used in the interface) at Github. The

domain interface and models should have enough Javadoc to explain the usage.

•Events

If the domain adds new events to the OpenEngSB, the link to the events package at Github should be

provided. The meaning of each events should be documented through the Javadoc at the actual class.

B.2.2. Connector

A connector for a specific domain should be documented in the domain-specific directory. Add a new

file with the unique name of the connector.

The documentation of a connector should at least conisst of the following parts:

•Description

Provide a description of the external tool and its purpose.

•External tool configuration

A section on how to configure the actual external tool for usage with the OpenEngSB has to be

provided.

•Support for domain interface

Any deviation to the provided functionality of the domain should be documented. E.g a connector

may only implement parts of the domain interface.

B.3. Using Docbook

This is not a DocBook manual but rather an explanation what type of docbook tags are used in this

documentation. If you are new to DocBook you should read DocBook 5: The Definitive Guide.

B.3.1. Tags

DocBook has many tags to choose from. This list describes which tags should be used in which cases.

http://www.docbook.org/tdg5/en/html/docbook.html

Writing Documentation

41

Tag Description Example

<command> Used for executables Type <command>ls</command> to get the

contents of the directory.

<envar> Used for environment variables PATH

<emphasis> Used to emphasize words in a sentence This chapter explains only the very basics of

Git.

<filename> Used for files and directories You can set environment variables in

<filename>~/.profile</filename>.

<guibutton> Used to describe buttons in a GUI Press <guibutton>Next</guibutton> to

continue with the process.

<guilabel> Used to describe labels in a GUI Select <guilabel>Copy projects into

workspace</guilabel>

<guimenu> Used to describe menus in a GUI Go to <guimenu>File</guimenu>,

<guimenu>Import...</guimenu>.

<itemizedlist> Used for bullet type lists <itemizedlist><listitem>One</

listitem><listitem>Two</listitem></

itemizedlist>

<listitem> Used for entries in a list <itemizedlist><listitem>One</

listitem><listitem>Two</listitem></

itemizedlist>

<option> Used for options of commands <command>mvn</command>

<option>clean</option> is used to clean the

project.

<orderedlist> Used for numbered lists <orderedlist><listitem>One</

listitem><listitem>Two</listitem></

orderedlist>

<para> Used for paragraphs <para>This is a paragraph.</para>

<programlisting> Used to display code (e.g. XML or

Java). Generally it is a good idea to

wrap the contents of this tag in a

CDATA section.

<programlisting><!

[CDATA[System.out.println("Hello,

world!");]]<</programlisting>

<replaceable> Used for placeholders in examples Type <command> <replaceable>/path/to/

maven</replaceable>

<ulink> Used for links to external resources You should read <ulink url="http://

www.docbook.org/tdg5/en/html/

docbook.html">DocBook 5: The Definitive

Guide</ulink>.

Writing Documentation

42

Tag Description Example

<userinput> Used for data which is entered by the

user

Type <userinput>n</userinput> to

overwrite the default values.

<warning> Used for warnings about a chapter <warning><para>This chapter is out of

date.</para></warning>

B.3.1.1. Including an image

Images can be included in this way:

<mediaobject>

 <imageobject>

 <imagedata id="new" fileref="graphics/testclient_message.png"

 format="png" width="400" align="center" />

 </imageobject>

 <caption>Messaging</caption>

</mediaobject>

B.3.1.2. Using a table

There are two types of tables. Normal tables (<table>) and informal tables (<informaltable>)which

don't have a caption. Using informal tables should be fine most of the time. Example:

<informaltable>

 <colgroup>

 <col width="50" />

 <col width="100" />

 </colgroup>

 <thead>

 <tr>

 <td>

 Name

 </td>

 <td>

 Description

 </td>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>

 table

 </td>

 <td>

 A table with a caption

 </td>

 </tr>

 <tr>

 <td>

 informaltable

 </td>

 <td>

 A table without a caption

 </td>

 </tr>

 </tbody>

</informaltable>

Writing Documentation

43

B.3.1.3. Generating the documentation

To build the documentation maven with some plugins is used. The full documentation can be generated

in one simple step:

cd docs
mvn clean install -Pdocs

The documentation can be found in docs/target/docbkx in HTML and PDF format.

44

Appendix C. License

 Apache License

 Version 2.0, January 2004

 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,

 reproduction, and distribution as defined by Sections 1 through

 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized

 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all

 other entities that control, are controlled by, or are under

 common control with that entity. For the purposes of this

 definition, "control" means (i) the power, direct or indirect,

 to cause the direction or management of such entity, whether by

 contract or otherwise, or (ii) ownership of fifty percent (50%)

 or more of the outstanding shares, or (iii) beneficial ownership

 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity

 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making

 modifications, including but not limited to software source code,

 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical

 transformation or translation of a Source form, including but

 not limited to compiled object code, generated documentation,

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or

 Object form, made available under the License, as indicated by a

 copyright notice that is included in or attached to the work

 (an example is provided in the Appendix below).

License

45

 "Derivative Works" shall mean any work, whether in Source or

 Object form, that is based on (or derived from) the Work and

 for which the editorial revisions, annotations, elaborations,

 or other modifications represent, as a whole, an original work

 of authorship. For the purposes of this License, Derivative

 Works shall not include works that remain separable from, or

 merely link (or bind by name) to the interfaces of, the Work

 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including

 the original version of the Work and any modifications or

 additions to that Work or Derivative Works thereof, that is

 intentionally submitted to Licensor for inclusion in the Work

 by the copyright owner or by an individual or Legal Entity

 authorized to submit on behalf of the copyright owner. For the

 purposes of this definition,

 "submitted" means any form of electronic, verbal, or written

 communication sent to the Licensor or its representatives,

 including but not limited to communication on electronic mailing

 lists, source code control systems, and issue tracking systems

 that are managed by, or on behalf of, the Licensor for the

 purpose of discussing and improving the Work, but excluding

 communication that is conspicuously marked or otherwise

 designated in writing by the copyright owner as "Not a

 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal

 Entity on behalf of whom a Contribution has been received by

 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions

 of this License, each Contributor hereby grants to You a

 perpetual, worldwide, non-exclusive, no-charge, royalty-free,

 irrevocable copyright license to reproduce, prepare Derivative

 Works of, publicly display, publicly perform, sublicense, and

 distribute the Work and such Derivative Works in Source or

 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of

 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

 (except as stated in this section) patent license to make, have

 made, use, offer to sell, sell, import, and otherwise transfer

 the Work, where such license applies only to those patent claims

 licensable by such Contributor that are necessarily infringed by

 their Contribution(s) alone or by combination of their

License

46

 Contribution(s) with the Work to which such Contribution(s) was

 submitted. If You institute patent litigation against any entity

 (including a cross-claim or counterclaim in a lawsuit) alleging

 that the Work or a Contribution incorporated within the Work

 constitutes direct or contributory patent infringement, then any

 patent licenses granted to You under this License for that Work

 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the

 Work or Derivative Works thereof in any medium, with or without

 modifications, and in Source or Object form, provided that You

 meet the following conditions:

 (a) You must give any other recipients of the Work or

 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices

 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works

 that You distribute, all copyright, patent, trademark, and

 attribution notices from the Source form of the Work,

 excluding those notices that do not pertain to any part of

 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its

 distribution, then any Derivative Works that You distribute

 must include a readable copy of the attribution notices

 contained within such NOTICE file, excluding those notices

 that do not pertain to any part of the Derivative Works, in

 at least one of the following places: within a NOTICE text

 file distributed as part of the Derivative Works; within the

 Source form or documentation, if provided along with the

 Derivative Works; or, within a display generated by the

 Derivative Works, if and wherever such third-party notices

 normally appear. The contents of the NOTICE file are for

 informational purposes only and do not modify the License.

 You may add Your own attribution notices within Derivative

 Works that You distribute, alongside or as an addendum to

 the NOTICE text from the Work, provided that such additional

 attribution notices cannot be construed as modifying the

 License.

 You may add Your own copyright statement to Your modifications

 and may provide additional or different license terms and

 conditions for use, reproduction, or distribution of Your

 modifications, or for any such Derivative Works as a whole,

License

47

 provided Your use, reproduction, and distribution of the Work

 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state

 otherwise, any Contribution intentionally submitted for

 inclusion in the Work by You to the Licensor shall be under the

 terms and conditions of this License, without any additional

 terms or conditions. Notwithstanding the above, nothing herein

 shall supersede or modify the terms of any separate license

 agreement you may have executed with Licensor regarding such

 Contributions.

 6. Trademarks. This License does not grant permission to use the

 trade names, trademarks, service marks, or product names of the

 Licensor, except as required for reasonable and customary use

 in describing the origin of the Work and reproducing the content

 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or

 agreed to in writing, Licensor provides the Work (and each

 Contributor provides its Contributions) on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied, including, without limitation, any warranties or

 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or

 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

 determining the appropriateness of using or redistributing the

 Work and assume any risks associated with Your exercise of

 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,

 whether in tort (including negligence), contract, or otherwise,

 unless required by applicable law (such as deliberate and

 grossly negligent acts) or agreed to in writing, shall any

 Contributor be liable to You for damages, including any direct,

 indirect, special, incidental, or consequential damages of any

 character arising as a result of this License or out of the use

 or inability to use the Work (including but not limited to

 damages for loss of goodwill, work stoppage, computer failure or

 malfunction, or any and all other commercial damages or losses),

 even if such Contributor has been advised of the possibility of

 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing

 the Work or Derivative Works thereof, You may choose to offer,

 and charge a fee for, acceptance of support, warranty, indemnity,

 or other liability obligations and/or rights consistent with this

 License. However, in accepting such obligations, You may act only

License

48

 on Your own behalf and on Your sole responsibility, not on behalf

 of any other Contributor, and only if You agree to indemnify,

 defend, and hold each Contributor harmless for any liability

 incurred by, or claims asserted against, such Contributor by

 reason of your accepting any such warranty or additional

 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following

 boilerplate notice, with the fields enclosed by brackets "[]"

 replaced with your own identifying information. (Don't include

 the brackets!) The text should be enclosed in the appropriate

 comment syntax for the file format. We also recommend that a

 file or class name and description of purpose be included on the

 same "printed page" as the copyright notice for easier

 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied. See the License for the specific language governing

 permissions and limitations under the License.

	Open Engineering Service Bus Documentation
	Table of Contents
	Part I. OpenEngSB Framework
	Chapter 1. What is the Open Engineering Service Bus
	Chapter 2. When to use the OpenEngSB
	2.1. The OpenEngSB as Base Environment
	2.2. Reusing integration Components and Workflows
	2.3. Management Environment
	2.4. Simple Development and Distribution Management
	2.5. Simple Plug-Ins and Extensions

	Chapter 3. Quickstart
	3.1. Writing new projects using the OpenEngSB
	3.2. Writing Domains for the OpenEngSB
	3.3. Writing Connectors for the OpenEngSB

	Chapter 4. Architecture
	4.1. Domain
	4.2. Connector

	Chapter 5. Context Management
	Chapter 6. Persistence in the OpenEngSB
	Chapter 7. Workflows
	7.1. Workflow service
	7.2. Rulemanager
	7.3. Processes

	Chapter 8. External Domains and Connectors
	8.1. Connect With CSharp
	8.2. Proxying
	8.2.1. Proxying internal Connector calls

	8.3. Using JMS proxying
	8.3.1. Proxying internal Connector calls
	8.3.2. Event handling via JMS
	8.3.3. Test JMS Connector with Python Stomppy Client

	Part II. OpenEngSB Available Domains & Connectors
	Chapter 9. Notification Domain
	9.1. Description
	9.2. Functional Interface
	9.3. Connectors
	9.3.1. Email Connector
	9.3.1.1. External Tool Configuration

	Chapter 10. SCM Domain
	10.1. Description
	10.2. Functional Interface
	10.3. Connectors
	10.3.1. Git Connector
	10.3.1.1. External Tool Configuration

	Chapter 11. Issue Domain
	11.1. Description
	11.2. Functional Interface
	11.3. Connectors
	11.3.1. Trac Connector
	11.3.1.1. External Tool Configuration

	Chapter 12. Report Domain
	12.1. Description
	12.2. Functional Interface
	12.3. Connectors
	12.3.1. Plaintext Report Connector
	12.3.1.1. External Tool Configuration

	Part III. OpenEngSB Commiters & Contributors
	Chapter 13. Getting Started as a Developer
	13.1. Getting comfortable with the infrastructure
	13.1.1. Mailing Lists
	13.1.2. Jira Issue Tracker
	13.1.3. Code Repository
	13.1.4. Maven Repository
	13.1.5. Build Server

	13.2. Prerequisites
	13.2.1. Installing Git
	13.2.2. Installing Maven

	13.3. Starting OpenEngSB
	13.4. Using Eclipse
	13.5. Using Other IDEs than Eclipse
	13.6. Git Documentation
	13.6.1. Usage
	13.6.2. Github
	13.6.3. Starting up and configure
	13.6.4. Contributor Workflow
	13.6.5. Commiter Workflow
	13.6.6. Additional Rules

	Chapter 14. How To Create an Internal Connector
	14.1. Prerequisites
	14.2. Creating a new connector project
	14.2.1. Using the Maven Archetype
	14.2.2. Using the gen-connector.sh shell script

	14.3. Project Structure
	14.4. Customizing
	14.5. Integrating the Connector into the OpenEngSB environment

	Chapter 15. How To Create an Internal Domain
	15.1. Prerequisites
	15.2. Creating a new domain project
	15.2.1. Using the Maven Archetype
	15.2.2. Using the gen-domain.sh shell script
	15.2.3. Project structure
	15.2.4. Customizing

	15.3. Integrating the Domain into the OpenEngSB environment
	15.4. Components

	Chapter 16. Prepare and use Non-OSGi Artifacts
	16.1. Use Wrapped Jars
	16.2. Create Wrapped Artifacts
	16.3. Workflow

	Chapter 17. Admin
	17.1. OpenEngSB Infrastructure Server
	17.2. OpenEngSB Build
	17.3. OpenEngSB Issuetracker
	17.4. OpenEngSB git
	17.5. OpenEngSB Maven
	17.5.1. internal
	17.5.2. external

	17.6. OpenEngSB Mailinglist

	Part IV. Appendix
	Appendix A. Java Coding Style
	A.1. Sun Coding Guidelines
	A.1.1. Line length
	A.1.2. Wrapping
	A.1.3. Number of declarations per line
	A.1.4. Declaration placement
	A.1.5. Blank lines

	A.2. General
	A.2.1. File format
	A.2.2. Header
	A.2.3. Duplication
	A.2.4. Use guards
	A.2.5. Keep methods short
	A.2.6. Use enums
	A.2.7. Avoid use of static members
	A.2.8. Use fully qualified imports
	A.2.9. Never declare implementation types
	A.2.10. SerialVersionUID
	A.2.11. Restrict scope of suppressed warnings
	A.2.12. Use String.format()
	A.2.13. Array declaration style
	A.2.14. Comments

	A.3. Naming
	A.3.1. Interfaces
	A.3.2. Don't abbreviate

	A.4. No clutter
	A.5. Exception Handling
	A.6. Tests
	A.6.1. General
	A.6.2. Naming Scheme

	A.7. XML Formatting
	A.7.1. File Format
	A.7.2. Eclipse Settings
	A.7.3. Recommended Readings

	Appendix B. Writing Documentation
	B.1. General Documentation Guidelines
	B.2. Document a domain or connector
	B.2.1. Domain
	B.2.2. Connector

	B.3. Using Docbook
	B.3.1. Tags
	B.3.1.1. Including an image
	B.3.1.2. Using a table
	B.3.1.3. Generating the documentation

	Appendix C. License

