OpenEngSB Manual

1.0.2.RELEASE "Groovy Goofy"

Table of Contents

R oo [T 1 o o PSRRI 1
1. How tO read the ManUalcc.euiiiiiiie et e e e et e e e e e 2
2. What is the Open Engineering SErviCE BUSccuvviiiiee i 3
3. When to use the OpenENQGSBoovviiiii i 4

3.1. The OpenEngSB as Base Environmentccccceoe e, 4
3.2. Reusing integration Components and WOorkflowscccooociiiiiiiiiiniccieeeee, 4
3.3. Management ENVIFONMENToouiiiiiiiiiiees i 4
3.4. Simple Development and Distribution Managementcccoovveeeeiiiieneeniineeens 4
3.5. Simple Plug-INs and EXTENSIONScccuviiiiieeee e eecciiriee e e e e e e e e e s 4
[1. OpenENGSB FrameWOrKcoiiiiiiiiiiiiiiice e e e e e e e s e eeeeas 5
A, QUICKSIAI ..vueeiieeeeeeee ettt e e e e e e e e e ettt e e e e e e e e e e bbb e eeeaeeeeeabba e aaeaaeaees 6
4.1. Writing new projects using the OpenENngSBcoovviiiiiiiiiiiiee e 6
4.2. Writing Domains for the OpenENgSBooooiiiiiiii e 6
4.3. Writing Connectors for the OpenEngSBoooiiiiiiiiiii e 6
5. Architecture of the OPENENGSBc.cvviiiiieie e 7
5.1. OpenEngSB Enterprise Service BUS (ESB)uvvvievieiiiiiciiieeeee e 7
5.2. OpenENgSB INfrastructure ..., 8
5.3. OpenENgSB COMPONENEScooiiiiieeeeeeeeeee e 8
5.4. OpenENGSB TOOI DOMAEINSuvtieiiiiiieeiiiei et 8
5.5. Client TOOIS (Service CONSUMET)cccuvrieeiiiirieeiitiie et e et e et e e e e 8
5.6. Domain ToolS (Service PrOVIAEY)ocueiiiiiiiiieeeiieee e 8
5.7. Domain- and Client TOOI CONNECLOIScceiiuriieeiiiiieeeriieee e e e sreee e 9
6. ContexXt ManaQEMENTcouieiiii e e e e e e e et e e e e e e e e arta i a e e e e e e eeenenann 10
7. Persistence in the OPENENQGSBuuuiuiiiiiiiiiiiiiiiiir————————————————————— 11
8. WOIKIIOWS ...ttt e e e e e et e e e e e e e s e st e e e e e e e e e annsneneeeaaeeeeans 12
8.1. WOIKFIOW SEIVICE .. .eeeiiiiiiiee ettt e e e e et e e e e e s et eeeaaeeen e 12
8.2. RUIEIMANAGES ..t 12
8.3, PrOCESSES ... 12
ST IS 4o o) PR PRRR 13
10. External Domains and CONNECLOISc.oiicuuueiieieeeee et ee e e e e e e e e e e e e e s eenneeeeeeaaens 14
FO. 1. PrOXYING . .ueeeeeeeiineeeeeaitee e ettt aise e e st e e e a e e asn e e e et e e e e e e e e e nnnees 14
10.2. USING IM'S PrOXYING ..eveeeiuneeeeeiiiieeesaineeeeaassseeesssbeeeesasnseeesanseeesssnseeeessnnnneeas 14
11. OpenENGSB PIatfOrMoo.uviiiiiiiie et 16

[11. OpenEngSB Available Domains & CONNECLOISceviiveeeiiiiiiieier e e e e e e e 17

12. NOLtIfiCation DOMEINcoiviieieiiiiiie et e et e et e e st ee e s sbbee e e s sbaeeeesnneeeeeaans 18
D220 O 9 1= 1 (o 18
12.2. FUNCEIONEl INEEITACE ...eiiiieeei e e e e 18
G R ©(0] 0101 o (0 =R 18

G TS @11V o 2= o RSP 19
G50 R I T o] o OSSR 19
13.2. FUNCLIONE] INLEITACEvveeeeiiiiiee et 19
T A ©(0 001 o (o = TP PTTRTPTRPRTRPRTRIN 19

14, 1SSUE DOIMAIN ..ttt e ettt e e e e e e e ettt e e e e e e e s s annteeeeeeaaeeaaannenneeeeeens 20
o B = ol T o 1 o] R TP POTPPPP TP 20
14.2. FUNCLION@ INEEITACE ..vvviiie e e e e e 20

OpenEngSB Manua

e T O] 1= o (o £ 20

T B L= oo [A L)1 7= 1 I SRR 21
T IR B 7= v] o (o OSSP 21
15.2. FUNCIONAl INEEITACE ...eoiiie i e e 21
TG A ©(0 0101 o (0 = TP PPTRTRPRRRTTPRRRIN 21
=11 Vo I o 1= o SRR 22
G B B <ol] o 1 o o PP PRP PO PPP 22
16.2. FUNCLIONE] TNEEITACEvveiiiiiiiiie et 22
16.3. CONMNECLONSuvvevettieietetitetetetete ettt nenee 22

N 1= R T 1 0 o PSR 23
17. 0. DESCIIPLION eieiieiee ettt e ettt et e e et e e e e e e e e e e e e e e e anneee s 23
17.2. FUNCEIONA INEEITACE ..eeiiiiei i e e e e 23
A T O] 1= o (o 23

R T ol [0V B o o T o R 24
G I B TS v] o1 OSSR 24
18.2. FUNCIONEl INEEITACE ...eoiiiiiei e e e e 24
RS TG A ©(0] 0101 ox (o = TP TTTRTRPRPRTRPRRRIN 24

19. MUlti-DOMaAIN CONNECLOIS ...eeeiieiiiiieeeee e e s eeeiieeer e e e e e e s sttt e e e eaeeesssnnneaeeeeaeeessasnsnneeeeens 25
e I I O 1= (o 25

V. OpenEngSB Commiters & CONtrDULOrSvvviiiieeiiiieeeee e 26
20. Getting Started as a DEVEIOPESueiiie i 27
20.1. Getting comfortable with the infrastructurec.cc 27
20.2. Prer@QUISITESeeiiieeei ittt e e e e ettt e e e e e e e s et e e e e e e e e st eeeeeaae e e s annneraeeeeaeens 28
20.3. Starting OPENENQGSBooiiiiiiie s 28
20.4. USING ECHIPSE ...t 29
20.5. Using Other IDES than ECHPSEvvvviiiieiiiiciiiiiee et eeiaeee e 29
20.6. Git DOCUMENLALIONvveiieeiiieiee ettt e e e e e ennees 29

21. How To Create an Internal CONNECLONcouviieeiiiiieeeeiiieeeseiiee e sieee e e sneeee e snneeee s 32
P R == o1 =SSP 32
21.2. Creating & NEeW CONNECLOr PrOJECTcouvveeeeiiiiiee ettt e e et e et e e 32
21.3. PrOJECE SIUCKUIE ..ottt e 33
21.4. Integrating the Connector into the OpenENgSB environmentcccceevvveeeenns 34

22. How To Create an Internal DOMAINccooiiuiiiiiiiiiiie e 35
221, Prer@QUISITES ..uvveeiieie i i ittt e e e e e es ettt e e e e e e s st e e e e e e e s e sttt e e e e e eaeesssnanrnbereeaaeas 35
22.2. Creating a NEW dOMaiN PrOJECEuvuuureuerrrrrrrerernnenrrenererenrnernnenenrnrnrnenrnnnnns 35
22.3. COMPONENES .eeiiieieiiiiiteeeeeee e e s s s e e e e e s s e e e e e e s s s san e e e e e e s e s s annnrreeeeeeeenn 37
S Ol0 0] 1 ol (0] £ PPN 38

23. Prepare and use NON-OSGi ATTITACESooivviiiiiiiiie e 39
23.1. Create Wrapped ArtifactSuveieiiie i 39
23.2. TIPS AN THICKS 1oiiiiiiiiiiieeee e e e e e e et e e e e e e e s snanb e e e eaaeas 40

24. Release and REI@ASE PrOCESSc..coiiiiiiiiiiieiee ettt e e e s e e e e e e e e eeeeeeaaeeean 41
24.1. Releases and the OpENENGSBoooiiiiiiii e 41
S € = T =g To: 1= 42
24.3. CONFIGUIE MAVENoeiiiiiiiiie ettt e e 42
P o - o N - LSRR 43
24.5. Perform the rel@8Secooiieiiie e 44
24.6. SPread the NBWS ..o 44

OpenEngSB Manua

24.7. Prepare ChangEIOgooiueeiieiiiiiie ettt 44

25, AAMIN <.t e et e e e e e e e nnbre e e e 46
25.1. INFFASIIUCIUIEeeiiiiiiiiee ettt et e et e e s e e e s nnnnee s 46
25.2. Logo Locations and Upgradecoooeeeeeeie e a7

RV Y o] < 1 o [PP U U PP PP PRPP PP 49
A, JaVA COUING SEYIE ..ot 50
A.L SUN CodiNg GUIAEIINESccoiiiiiiiiiiiiiie e 50

A2, GENEIEL ..o 50

F N I AT o 1 oo SR 53
N N[0 I o 1 £ = 53

A5, EXCEPioN HANAIING ..o 53

N T I = £ PRSP 54

A7 XML FOMMEITING ..vveeeiiiiieeeeiiieee et e st e s e e e e e e e neees 54

B. WHHING COUE ...t e e e e e e st e e e e e e e s ssanrraereeaaeenaas 56
B.1. Maven POM filesin the OpenENgSBcccviiieiiie e 56

C. Recommended Eclipse Plug-ins for DeVEIOPErSccoiiiiiiiiiiiii e 58
C.1. Properties EQITOrcoiiiiieiieiei e e e e e st e e e e e e e e e 58

C.2. SPING IDE ...ttt 58

C.3 ECHPSE CS ettt et e e s 58

(O3 B oo SRR TPRR 58

D. Writing DOCUMENLBLIONuuviiiieeieeiiiiiiiiiee e e e e e e e et e e e e e e e s s re e e e e e e e s s s anabaaeeeaaeeenans 59
D.1. General Documentation GUIAEIINESueeiiiiiiiiiiiiiieeee e 59

D.2. Document a domain OF CONNECLONceerieeeeiiiiiieieeeaaeeseaeiiieeeeeaeeesaeneneeeeeeens 59

D.3. USING DOCHOOK ...t 60

T I o= 1 USSR 63

Part |. Introduction

This parts provides general information to the project, the document, changelog and similar datawhich fits neither
in the framework description nor in the contributor section.

The target audience of this part are devel opers, contributors and managers.

Chapter 1. How to read the Manual

Like any open source project we have the problem that writing documentation is a pain and nobody
is paid for doing it. In combination with the rapidly changing OpenEngSB source base this will lead
to a huge mess within shortest time. To avoid this problem we've introduced regular documentation
reviews and, more importantly, the following rules which apply both for writing the document and
for reading it.

« The manual iswritten as short and precise as possible (Iess text means lesser to read and even lesser
to review)

« The manual does not describe how to use an interface but only coarse grained concepts in the
OpenEngSB. Since the OpenEngSB is not an end user application, but rather a framework for
devel opers we expect that Javadoc is no problem for them. Writing Javadoc and keep it up to date
is still hard for developers, but much easier than maintaining an external document. Therefore, al
conceptsare explained and linked directly to the very well documented interfacesin the OpenEngSB
on Github. To fully understand and use them you'll have to read this manual parallel to theinterface
documentation in the source code.

Chapter 2. What is the Open Engineering Service

Bus

In engineering environmentsalot of different toolsare used. Most of these operate on the samedomain,
but often interoperability isthe limiting factor. For each new project and team member tool integration
has to be repeated again. In general, this ends up with numerous point-to-point connectors between
tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It
simplifiesdesign and implementation of workflowsin an engineering team. The engineering team itself
(or aprocess administrator) is able to design workflows between different tools. The entire description
process happens on the layer of generic domains instead of specific tool properties. This provides an
out of the box solution which allows typical engineering teams to optimize their processes and make
their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of
individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard al integrated tools and
workflows. This offers new ways in notifying managers at the right moment and furthermore allows
avery general, distanced and objective view on a project.

Although this concept isvery powerful it cannot solve every problem. The OpenEngSB is not designed
asagenera graphical layer over an Enterprise Service Bus (ESB) which allowsyou to design ALL of
your processes out of the box. Aslong as you work in the designed domains of the OpenEngSB you
have alot of graphical support and other tools available making your work extremely easy. But when
leaving the common engineering domainsyou al so |eave the core scope of the service bus. OpenEngSB
till allows you to connect your own integration projects, use services and react on events, but you have
to keep in mind that you're working outside the OpenEngSB and "falling back” to classical Enterprise
Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools
aready used for your development process, it will integrate them. Our service busis used to connect
the different tools and design a workflow between them, but not to replace them with yet another
application. For example, software engineers like us love their tools and will fight desperately if you
try to take them away. We like the wheels as they are, but we do not like the way they are put together
at the moment.

Chapter 3. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to
make clear in which situations the OpenEngSB can be useful for you.

3.1. The OpenEngSB as Base Environment

OSGi isavery popular integration environment. Instead of delivering one big product the products get
separated into minor parts and deployed within ageneral envioronment. The problem with this concept
isto get old, well known concepts up and running in the new environment. In addition tools such as
PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as
Karaf alow aricher and easier development. Neverthless, settting up such a system for development
means alot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

3.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start
from the ground and devel op a compl ete, own environment, only using existing connectors. Using the
OpenEngSB not only connectors but an entire integrated process, workflow and event environment
waits for you. In addition connectors to different tools can not only be adapted to the specific needs,
but also simply replaced by other connectors, using the Domain concept.

3.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this
environment can be added to your project standalone (similar to e.g. Tomcat management console€)
you also have the possibility to completely integrate the OpenEngSB management enviornment into
your Apache Wicket application.

3.4. Simple Development and Distribution Management

While typical ESB have to be installed seperately from your application the OpenEngSB is delivered
with your application. Develop your application in the OpenEngSB environment and scripts to embed
your application into the OpenEngSB are provided. In addition easy blending alows to adapt the
OpenEngSB visually to your needs and cooperate design.

3.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven
archetypes Plug-Ins can be created, uploaded and provided to al other OpenEngSB installations or
applications using the OpenEngSB.

Part II. OpenEngSB Framework

This part gives an introduction into the OpenEngSB project and explains its base usage environment and the
concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers
installation, configuration and usage of the administration interface to implement a tool environment according
to your needs.

The target audience of this part are developers and contributors.

Chapter 4. Quickstart

As adeveloper you have basically two ways in which you can use the OpenEngSB. One option isto
use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to
write Plug-Ins (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

4.1. Writing new projects using the OpenEngSB

TBW

4.2. Writing Domains for the OpenEngSB

TBW

4.3. Writing Connectors for the OpenEngSB

TBW

Chapter 5. Architecture of the OpenEngSB

This chapter tries to give a short summary of the most important concepts in the OpenEngSB
architecture.

The following graphic shows the architecture of the OpenEngSB. In the center we use a bus
system to integrate different modules. In this case we do not use a classical Enterprise Service
Bus (ESB), but rather the OSGi service infrastructure via Spring-DM (Section 5.1, “OpenEngSB
Enterprise Service Bus (ESB)”). We are using Apache Karaf as the OSGi environment. Karaf is
used in this case, instead of a most basic OSGi environment, such as Apache Felix or Eclipse
Equinox , because it supports us with additional features as extended console support and the feature
definitions. This base infrastructure, including all modifications required for the OpenEngSB is
called the Section 5.2, “OpenEngSB Infrastructure”. Within the OpenEngSB Infrastructure so called
Section 5.3, “OpenEngSB Components’ and Section 5.4, “OpenEngSB Tool Domains’ are installed.
Both types are written in a VM compatible language, including OSGi configuration files to run in
the OpenEngSB Infrastructure. They are explained later within this chapter. Different tools running
outside the OpenEngSB Infrastructure are called Section 5.5, “Client Tools (Service Consumer)” or
Section 5.6, “Domain Tools (Service Provider)”, depending on their usage scenario. To integrate and
use them within the OpenEngSB so called Section 5.7, “Domain- and Client Tool Connectors’ are
used. All of these concepts are explained within the next sections.

Engineering Service Bus
(OpenEngSB)
Domain Tool Client Tool
i i ESB i
Domain Tools Connectors Tool Domains Core Components Connectors Client Tools
Team Communication
Tool A C Client Tool A
Team Communication
Tool Demain
Team Communication C
Tool B C client Tool B
Electrical Engineering
Tool A Registry
Electrical Engineering Electrical Engineering
Tocl B Tool Domain
workflow
Electrical Engineering -
Tool C
OpenEngSB Infrastructure

Technical view of the OpenEngSB highlighting the
most important concepts of the integration system

5.1. OpenEngSB Enterprise Service Bus (ESB)

One of the principa concepts for the OpenEngSB development is (if possible) to use already existing
and proven solutions rather than inventing new ones. In this manner the OpenEngSB is an extension
to the ESB concept. Typical ESBs such as Apache Servicemix or other JBI or ESB implementations
always have the feeling to be huge and bloated. Complex integration patterns, messaging, huge

http://karaf.apache.org
http://felix.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://servicemix.apache.org

Architecture of the OpenEngSB

configuration files and similar concepts/problems lead to this feeling. And those feelings are right.
They are bloated. The OpenEngsB tries a different approach. Using Karaf as its base framework the
environment is VERY lightweight. Depending on your use case you can use different configurations
and packages out of the box.

5.2. OpenEngSB Infrastructure

While Apache Karaf provides a rich environment and functionality we're not done with it. Via the
Spring-DM extension mechanism, AOP and the OSGi listener model the OpenEngSB directly extends
the environment to provide own commands for the console, fine grained security and a full grown
workflow model. These extensions are optional and not required if you want to use the platform alone.
Add or remove them as required for your use case.

5.3. OpenEngSB Components

These libraries are the OpenEngSB core. The core is responsible to provide the OpenEngSB
infrastructure as well as general services such as persistence, security and workflows. To provide best
integration most of these components aretied to the OpenEngSB ESB environment. Nevertheless, feel
free to add or remove them as required for your use case.

5.4. OpenEngSB Tool Domains

Although each tool provider gives a personal touch to its product their design is driven by a specific
purpose. For exampl e, thereare many different issuetrackersavailable, each having itsown advantages
and disadvantages, but all of them can create issues, assign and delete them. Tool Domains are based
on this idea and distill the common functionality for such a group of tools into one Tool Domain
interface (and component). Tool domains could be compared best to the concept of abstract classes
in in object orientated programming languages. Similar to these, they can contain code, workflows,
additional logic and data, but they are useless without a concrete implementation. Together with the
ESB, the OpenEngSB infrastructure and the core components the tool domains finally result in the
OpenEngSB.

5.5. Client Tools (Service Consumer)

Client Tools in the OpenEngSB concept are tools which do not provide any services, but consume
services provided by Tool Domains and Core Componentsinstead. A classical example from software
engineering for a client tool is the Integrated Development Environment (IDE). Developer prefer to
have the entire devel opment environment, reaching from the tickets for a project to its build results, at
hand. On the other hand they do not need to provide any services.

5.6. Domain Tools (Service Provider)

Domain Tools (Service Provider) Domain Tools, compared to Client Tools, denote the other extreme
of only providing services. Classically, single purpose server tools, like issue tracker or chat server,
match the category of Domain Tools best. Most tools in (software+) engineering environments fit of
coursein both categories, but since there are significant technically differences between them they are
described as two different component types.

Architecture of the OpenEngSB

5.7. Domain- and Client Tool Connectors

Tool Connectors connecto tools to the OpenEngSB environment. They implement the respective
Tool Domain interface. As Client Tool Connectors they provide a Client Tool with an access to the
OpenEngSB services. Again, Domain- and Client Tool Connectors are mostly mixed up but separated
because of their technical differences. Additionally it is worth mentioning that tools can be integrated
with more than one connector. Thisallows onetool to act in many different domains. Apache Mavenis
an examplefor such multi-purpose tools, relevant for build, aswell astest and deploy of Javaprojects.

Chapter 6. Context Management

Each project in the OpenEngSB has its own context to store meta information necessary for running
inside of the OpenEngSB. The context basically is represented as a tree structure with key-value pairs
as leafs.

The context in which aworkflow is executed, arule fired or another action happens can be compared
to the project in which the respective action happens. The context store therefore offers the possibility
to perform project specific configurations.

The context service can be used to query the context and to insert, update or delete values. Note that
under a specific name either anode or a leaf can be found, but not both. That means that the context
can be compared to a file system, where context nodes are directories and context leaves files. The
leaves in the context contain string key-value pairs.

The current context service extends the context service and provides additional methods for the
management of the current context of a thread and the creation of new root context entries (which
correspond to projects).

10

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/context/ContextService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/context/ContextCurrentService.java

Chapter 7. Persistence in the OpenEngSB

The OpenEngSB has a central persistence service, which can be used by any component within in
the OpenENgSB to store data. The service is designed for flexibility and usability for the storage of
relatively small amounts of data with no explicit performance requirements. If special persistence
features need to be used it is recommended to use a specialized storage rather than the general storage
mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)
mechanisms. Instances of the persistence service are created per bundle and have to make sure that data
isstored persistently. If bundles need to share datathe common persistence service cannot be used, asit
doesnot support thisfeature. The persistence manager isresponsiblefor the management of persistence
service instances per bundle. On the first request from a bundle the persistence manager creates a
persistence service. All later requests from a specific bundle should get the exact same instance of the
persistence service.

The persistence solution of the OpenEngSB was designed to support different possible back-end
database systems. So if a project has high performance or security requirements, which can not be
fulfilled with the default database system used by the persistence service, it is possible to implement
adifferent persistence back-end. To make this exchange easier atest for the expected behavior of the
persistence serviceis provided.

11

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceManager.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java

Chapter 8. Workflows

The OpenEngSB supportsthe modeling of workflows. This could be done by two different approaches.
First of all arule-based event approach, by defining actions based on events (and their content) which
were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy
to replace and extend. For long running business processes the secondary workflow method could be
used which is based on Section 8.3, “Processes’ described in Drools-Flow.

The workflow service takes "events' as input and handles them using a rulebased system (JBoss
Drooals). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

8.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected
to the environment (domains and connectors). When an event is fired, the workflow-service spawns a
new session of the rulebase. The session gets popul ated with references to domain-services and other
helper-objectsin form of global variables. A drools-session is running in a sandbox. This means that
the supplied globals are the only way of triggering actions outside the rule-session.

8.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the
rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are
saved separately. All elements share a common collection of import- and global-declarations. These
parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or
function to the rulebase, make sure that all imports are present before. Otherwise the adding of the
elements will fail.

8.3. Processes

In addition to processing Events in global/context-specific rules, it is also possible to use them to
control a predefined workflow. The WorkflowService provides methods for starting and controlling
workflow-processes.

When the workflow service receives an event, it is inserted into the rulebase as a new fact (and rules
arefired accordingly). In addition the event is"signaled" to every active workflow-process. Workflow
logic may use specific rulesto filter these events.

12

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/workflow/WorkflowService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/workflow/RuleManager.java

Chapter 9. Taskbox

The Taskbox is a service which can be used when human interaction is required, e.g. by help desk
applications. It consists of a core and an Ul project. The core is responsible for storing tasks (via
persistence), throwing events and starting workflows. Therefore it provides methods which can be
called by workflows e.g. assigning a task to different user-roles (such as case worker or developer)
or setting atask status.

It is aso the job of the core taskbox to choose the right wicket panel from the Ul project to display
the right information in a certain situation. A wicket panel contains of a HTML-snippet which can
be embedded into another HTML file, an underlying data model some logic like buttonlisteners and
session handling.

So the ideais that an application which wants to use the taskbox only has to define an areain awicket
page where the taskbox is to be bound. The taskbox then takes control and takes user input to fill in
the domain aobject behind which then gets stored again and used to decide how the workflow will go
on. Based on the workflow and user interaction the taskbox then decides which panel is to be shown.

For each main action, the Taskbox throws an event. Examplesfor that are create, assign, finish or edit
events. These events are used to trigger or resume workflows and they can also be recorded by another
component which then can reconstruct the flow based on them.

The Taskbox service provides the methods to be called by workflows and to bind it to a Ul. Take a
closer look to explore its usage and possibilities.

13

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/taskbox/TaskboxService.java

Chapter 10. External Domains and Connectors

Since tools are mostly neither developed for the OpenEngSB nor written in any way that they can
be directly deployed in the OpenEngSB environment a way is required to connect via different
programming languages than Java and from multible protocols. This section covers the examples in
different languages and protocols, how such athing can be achived.

10.1. Proxying
The proxy mechanism allows for any method call to be intercepted.

10.1.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceManager for every Domain to instantiate a proxy. An
InvocationHandlerFactory has to be provided for proxying any call. The proxy has to be created via
the normal instantiation mechanism on the website.

10.2. Using JMS proxying

Thecurrent IM S Connector alowsfor internal method callsbeing redirected viaJM S, aswell asEvents
being raised through JM S via an external source.

10.2.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceM anager for every Domain to instantiate aproxy. The
proxy hasto be created viathe normal instantiation mechanism on the website. Whenever now a proxy
method is called the call ismarshalled and sent viaJM Sto aqueue named <Domainl D>_method_send.
Themarshalling isdoneviaJSON. The mapping has the parameterstype, which can be Call, Exception
or Return, message, which in case of amethod call isasimple serialisation of the arguments and name,
which denotes the name of the method.

After sending the method call viaJM Sthe proxy waitsfor areturnat <DomainlD>_method return. The
return message can use the same parameters as the send serialisation (type, name, message), but name
isignored. The message parameter is serialised to the correct return typeif typeis set to RETURN. If
the type is Exception a new JM SException is thrown with the message.

By default aJMS Broker is started on port 6000.

10.2.2. Event handling via IMS

For every Domain found at the start of the OPENENgSB Server JM SConnector starts a listener on the
<DomainlD>_event_send queue. The parameters used are type and event. The type parameter is the
fully qualified class name that has to be used to deserialise the event and be used as the argument to
raiseEvent. After the correct class is loaded the content of the event parameter gets deserialised into
an instance of the type parameter. The corresponding raiseEvent method is then called for the domain
supported by this EventListener.

When the Event was processed a message is sent to the <DomainlD>_event_return queue with the
type set to RETURN and message set to OK. In case of Exception the typeis set to exception and the
message is set to the exception message.

14

External Domains and Connectors

10.2.3. Examples

10.2.3.1. Connect With Python
To test the OPENENGSB JM S implementation with Python please follow the instructions
The example can be downloaded here

10.2.3.2. Connect With CSharp

The CSharp connector is written on basis of the Apache ActiveMQ NMS connector and with help of
the Spring NmsTemplate. The code is checked into the repository and could be found in nonj ava/
cshar p. There an EngSB.dIn file. This project file has been developed with SharpDevelop 3, but is
also tested with Visual Studio 2008 CSharp Express Edition with the .Net Framework 3.5.

The example can be downloaded here
10.2.3.3. Connect With Perl

As shown in this example you can connect to the OpenEngSB in a similar way as with Python or
CSharp.

The example can be downloaded here

15

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/nonjava/python/PythonClient.txt
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.0.2.RELEASE/openengsb-docs-examples-1.0.2.RELEASE-python-connector.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.0.2.RELEASE/openengsb-docs-examples-1.0.2.RELEASE-csharp-connector.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.0.2.RELEASE/openengsb-docs-examples-1.0.2.RELEASE-perl-connector.zip

Chapter 11. OpenEngSB Platform

The aim of the OpenEngSB project, as for every open source project, is to make the life of everyone
better. Or at least the life of engineers ;). With that said, we want to support projects using the
OpenEngSB as base environment, or providing domains and connectors. While it is easy to find a
source repository and use the OpenEngSB (because of its business friendly Apache 2 license), it
is not that easy to get the visibility your project earns. We want to provide you with this visibility
by including your project into the OpenEngSB product family. Basically we provide you with the
following infrastructure:

* Sub domain within the OpenEngSB: yourproject.openengsb.org

» Upload space for a homepage at yourproject.openengsb.org

» Two mailinglists (yourproject-dev@openengsb.org and yourproject-user @openengsb.org)
» A git repository at github.com/openengsb/yourpoject

» A place at our issue tracker

» A place at our build server

To get your project on the infrastructure you have to use the Apache 2 license for your code and use
the OpenEngSB. It is not required to have any existing source base. Simply send your project proposal
to the openengsb-dev mailing list and we'll discuss your project. Don't be afraid; it's not as hard as
it sounds;)

16

Part Ill. OpenEngSB Available
Domains & Connectors

This part gives an overview about the domains and their functionality the OpenEngSB supports out of the box.
Furthermore each connector and necessary external tool configuration is explained.

The target audience of this part are devel opers and contributors.

17

Chapter 12. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email
notification.

12.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

12.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

12.3. Connectors

12.3.1. Email Connector
The email connector is asimple notification connector based on the javamail API.
12.3.1.1. External Tool Configuration

No external tool configuration is necessary.

18

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/notification/src/main/java/org/openengsb/domain/notification/NotificationDomain.java

Chapter 13. SCM Domain

The source code management (SCM) domain is the tool domain for all SCM toals, like Git or
Subversion.

13.1. Description

The SCM Domain polls external repositoriesfor changes of content under source control and provides
functionality to copy/export the repository content for further processing.

13.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

13.3. Connectors

13.3.1. Git Connector

The Git Connector isa SCM tool connector for the Git fast version control system.

13.3.1.1. External Tool Configuration
The external Git repository must be anonymously accessible with one of the following protocols:
1. git
2. http
3. ftp

No further configuration is needed.

19

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/scm/src/main/java/org/openengsb/domain/scm/ScmDomain.java
http://git-scm.com/

Chapter 14. Issue Domain

The issue domain isthe tool domain for al issue tracking tools, like Jira, Trac or Mantis.
14.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

14.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

14.3. Connectors

14.3.1. Trac Connector

The Trac Connector isaissuetool connector for the Trac project management and issue tracker system.

14.3.1.1. External Tool Configuration

The external Trac tool hasto be accessible via XmlRpc. For this purpose the XmIRpcPlugin hasto be
installed (see http://trac.edgewall.org/wiki/PluginList).

20

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/issue/src/main/java/org/openengsb/domain/issue/IssueDomain.java
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/PluginList

Chapter 15. Report Domain

The report domain is the tool domain for report generation and management tools.

15.1. Description
The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports
and a category system for report storage.

15.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

15.3. Connectors

15.3.1. Plaintext Report Connector

The plain text report tool connector is simple implementation of the report domain, which generates
plain text reports.

15.3.1.1. External Tool Configuration

No external configuration is needed.

21

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/report/src/main/java/org/openengsb/domain/report/ReportDomain.java

Chapter 16. Build Domain

The build domain isadomain for all build tools, like Maven or Ant.

16.1. Description

The build domain builds a specific pre-configured project or suite of projects.

16.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

16.3. Connectors

This domain is implemented by the Section 19.1.1, “Maven Connector”, which supports multiple
domains.

22

http://maven.apache.org/
http://ant.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/build/src/main/java/org/openengsb/domain/build/BuildDomain.java

Chapter 17. Test Domain
The test domain isadomain for all test tools, like Maven.

17.1. Description

Thetest domain runs all tests for a specific pre-configured project or suite of projects.

17.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

17.3. Connectors

This domain is implemented by the Section 19.1.1, “Maven Connector”, which supports multiple
domains.

23

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/test/src/main/java/org/openengsb/domain/test/TestDomain.java

Chapter 18. Deploy Domain
The deploy domain is adomain for all deploy tools, like Maven.
18.1. Description
The deploy domain deploys a specific pre-configured project or suite of projects.

18.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

18.3. Connectors

This domain is implemented by the Section 19.1.1, “Maven Connector”, which supports multiple
domains.

24

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/deploy/src/main/java/org/openengsb/domain/deploy/DeployDomain.java

Chapter 19. Multi-Domain Connectors

Some connectors support multiple domains. Therefore they cannot be categorized into a specific
domain.

19.1. Connectors

19.1.1. Maven Connector

The Maven Connector isabuild, test and deploy tool connector for Maven.

19.1.1.1. External Tool Configuration

The Maven executable has to be on the system path to make this connector work.

25

http://maven.apache.org/

Part IV. OpenEngSB
Commiters & Contributors

This part explains how to develop additional domains, connectors and similar parts. In addition it explains the
rules and infrastructure according to which the project is devel oped.

The target audience of this part are contributors.

26

Chapter 20. Getting Started as a Developer

This chapter describes the basic steps to get started as a devel oper for the OpenEngSB project.

20.1. Getting comfortable with the infrastructure

20.1.1.

20.1.2.

20.1.3.

20.1.4.

20.1.5.

As any open source project the OpenEngSB development depends on a wide range of different
infrastructural and communication methods to get things done. The following sub-chapters describe
the different tools, their location and usage in the OpenEngSB devel opment process.

Mailing Lists

The most important communication medium for the OpenEngSB development team is email. Mostly
all of the vital design, architectural and infrastructural decisions are discussed on the OpenEngSB
developer list. Therefore, the first step to get involved into the development of the OpenEngSB is to
register to the Google Groups OpenEngSB Developer Mailing List and say hello world.

While natifications from the Hudson Build Server, about code commits and Jira issues are vital
for the OpenEngSB core developer, they may not be as interesting for you. If you get annoyed
by the automatically generated notification mails ignore all mails from openengsb@gmail.com
and noreply@github.com to openengsb-dev@googlegroups.com. Please remember it is important to
configure both, t o and f r omin your filter. Both addresses will aso send notifications directly to you
which are important and should not be ignored!

Jira Issue Tracker

All issues are stored within a Jira instance reachable at issues.openengsb.org. Please use the issue
tracker to keep track of all bugs, ideas and new featuresyou're currently working or of which you think
they might be interesting.

Code Repository

Asfor any open source project the source codeis public available. We've chosen Github for thistask.
The project isavailable at _github.com/openengshb/openengsb.

As explained later within this document Github is not only used to store our code, but also for
collaboration, code review and patch-tracking.

Maven Repository

The OpenEngSB is available at Maven Central. We still have our own Maven repository at
maven.openengsb.org/ and snapshots are available via the sonatype Maven repository at http://
0SS.sonatype.org.

Build Server

The master and integration branch of the OpenEngSB repository are watched and built by a Hudson
build server instance available at build.openengsb.org. Notifications about failures are directly sent to
the OpenEngSB developer list.

27

http://groups.google.com/group/openengsb-dev
http://issues.openengsb.org/jira/browse/OPENENGSB
http://github.com
http://github.com/openengsb/openengsb
http://repo1.maven.org/maven2/org/openengsb/
http://maven.openengsb.org/
http://oss.sonatype.org
http://oss.sonatype.org
http://build.openengsb.org/hudson/

Getting Started as a Devel oper

20.2. Prerequisites

First of al the latest JDK has to be installed on the system and the JAvA_HOMVE variable has to be set
accordingly. All further steps are described in the subsections of this chapter.

20.2.1. Installing Git

Itisassumed that Git isinstalled. For Linux your distribution provides already a packagefor git. Please
use the package manager of your distribution (apt, yum, pacman, ...) toinstall it. For MAC binariesare

available at git-scm.com. For MS users cygwin or msysgit. After installing, set at least the following
variables:

git config - - gl obal user.name "Fi r st nane Last name"
git config - - gl obal user.email user @xanpl e. com
git config - - gl obal core.autcrlf input

20.2.2. Installing Maven

Finally download Apache Maven3 and unpack it. Add the path of the maven binary to your PATH
variable. Furthermore you should set the MAVEN_OPTS environment variable to allow Maven to use
more RAM. If you don't you'll get Out Of Memory errors.

export PATH=$PATH:/ pat h/ t o/ maven/bin
export MAVEN_OPTS="-Xmx1024M -XX:MaxPermSize=512m'

Add these commands to ~/ . bashr ¢ to make the settings permanent.

20.3. Starting OpenEngSB

The next step is to get the OpenEngSB source by checking out the current master using git:
git clone git://github.com/openengsb/openengsb.git

Now start the OpenEngSB by executing

mvn clean install pax:provision

This command builds, tests and runs the OpenEngSB right from your command-line. Executing the
following command will shutdown it again:

28

git-scm.com
www.cygwin.com
code.google.com/p/msysgit

Getting Started as a Devel oper

shutdown

20.4. Using Eclipse

Eclipse had been chosen by the OpenEngSB team as the main development environment. After
checkout the code the following command creates the required Eclipse project files:

mvn install
mvn eclipse:eclipse

Start Eclipse and select any workspace. The folder ecl i pse- wor kspace isignored in the OpenEngSB
project structure for this purpose. But you can choose any other directory if you prefer. At the
preference page go to Java/Build Path/Classpath Variables and create a new M2 _REPO pointing to
~/ . m2/ reposi t ory. Now use File, Import..., Existing Projects into Workspace. As the root directory
select the root of the OpenEngSB source. Eclipse will list several projects and for now it's best to
import them all by clicking Finish.

At openengsb/ et c/ ecl i pse/ eclipse configuration files for formatting and Checkstyle can be found.
These files should be used.

20.5. Using Other IDEs than Eclipse

Basically, the OpenEngSB is developed in plain Java, which means any other IDE than Eclipse can be
used too. While there are tools for most IDEs to use Checkstyle, but non of it supports the formatting
file of the OpenEngSB. Please use Checkstyle, which automatically validates the eclipse formatting
rules too.

20.6. Git Documentation

20.6.1. Usage

First of al this chapter explains only the very basics of Git and only that parts directly relevant for the
development of the OpenEngSB project, but not the entire idea and possibilities of Git. Please read
some tutorials first to get how to work with Git and see this chapter more as an summary! Y ou may
also take alook at the Git Documentation Page and the Pro Git Book.

20.6.2. Github

OpenEngSB isdevel oped at github.com. Please create an account there and exploreitsfeatures. Specify
your real namein theadmin tab and add a picture. Thismakesit easier to associate your commitsto you.

29

http://git-scm.com/documentation/
http://progit.org/book/
http://github.com/

Getting Started as a Devel oper

20.6.3. Starting up and configure

Before starting to work with Git some settings should be applied to Git. Therefore simply execute the
following commands.

git config - - gl obal user.name"First name Lastname”
git config - - gl obal user.email user @xanpl e. com

git config - - gl obal color.ui "auto"

git config - - gl obal pack.threads 0"

git config - - gl obal diff.renamelimit "0"

git config - - gl obal core.autocrlf "input"

Additionally execute the special settings for github as could be found on github in the "Account
Settings' tab is a point "Global git config information”. Please use the two git commands described
there

git config - - gl obal github.user user nare
git config - - gl obal github.token t oken

If you don't already have an SSH key you can create one by executing ssh-keygen Simply answer al
guestions from the application with "enter" without enter any values. Afterwards the content of the
i d_rsa. pub file from your ~/ . ssh/ directory should be submitted to github (Account Settings/SSH
public keys).

20.6.4. Contributor Workflow

Contributor are all developer who like to contribute to the OpenEngSB project, but not have commit
rights to openengsb/openengsb.

Please keep in mind, that this manual isNOT aGit tutorial. Github itself, e.g. provides agreat help at
help.github.com. All base concepts such as forking, pull-requests, ...

Please start by choose or create a new issue. Now create a new fork of the OpenEngSB at Github
(if you've not done aready so; otherwise this is explained here). Clone your fork, but also add
the original openengsb repository as remote repository. This is also explained here. In difference
to the Github tutorial please do not commit to the master, but rather create a new branch named
OPENENGSB-ISSUE_NUMBER_YOURE_WORKING_ON. Optionally append /DESCRIPTION
(e.g. OPENENGSB-586/mvn-eclipse-downl oad-fix).

git checkout - b OPENENGSB- | SSUE or i gi n/ BRANCH

BRANCH is the point where you like to start your work. If you like to contribute to the head thiswill be
typically integration, but could also beacommit or acompl ete different branch. Thisisthe OpenEngSB
schemafor naming branches and we'll really appreciate if you work according to it.

Now hack, commit and push as you like. If you think you're finished execute the et ¢/ scri pt s/ pre-
push. sh script validating your code, tests, licenses and so on. If everything workswithout errors create
aGithub pull request on Github, between the master or integration branch (depending on where you've

30

http://book.git-scm.com/
http://help.github.com/forking/
http://help.github.com/forking/

Getting Started as a Devel oper

created your branch on) and your branch. This processis also explained at help.github.com (here). In
addition it will help if you add the link to the pull request to the issue you're working on. A commiter
will tend as fast as possible to your request and give feedback or directly merge your commit into the
integration/master branch.

20.6.5. Commiter Workflow

The only difference between acommiter and a contributor is that he has to watch and merge branches
of contributors. If acommiter ishappy with the work of acontributor. Comments and other discussions
should be done on the mailing list and/or viathe Github review system and pull requests.

In addition commiters typically do not create forks but rather create their branches directly in the
OpenEngSB repository. Thisis done because the repository is covered by the OpenEngSB build server
and in addition keeps everything closer together.

20.6.6. Additional Rules

1

(Contributor/Committer) All development is done in branches (also of the core developers) One
exception to this rule exists: Small fixes and maintenance work which is NOT related to a new
feature and does not exceed 2 commits should be cherry-picked into the master directly.

. (Contributor/Committer) Rebase is not dead (although we use merges). Never ever commit local

merges. You still should develop in local dev branches and rebasing them with the upstream
branches. Only if nobody else has access to your fork you can be sure that nobody changed it!

(Committer) If merging branches from forked repositories ALWAY S use the - - no-f f option for
merges; this will always create a merge node (even if a fast-forward merge is possible). Thisis
required to create a clear and consistent history!

Avoid backward merges from the master and keep feature branches small! This does not mean that
backward merges from master are forbidden. But they should not be done too often, since they
create a history not easy to read. Please use the method described on this page (with - - no-ff --
no- cormmi t) to reduce the number of merge nodes.

Use meaningful feature branch names. Using the merge history in the master you can easily follow
the development of features. But this requires (maybe long) good names! In addition, always start
with OPENENGSB-NUMBER of the issue you're working on. Try to always do work based on
issues. If no issue covers what you're doing create one.

31

http://help.github.com/pull-requests/

Chapter 21. How To Create an Internal Connector

This chapter describes how to implement a connector for the OpenEngSB environment. A connector
is an adapter between an external tool and the OpenEngSB environment. Every connector belongsto
a domain which defines the common interface of all its connectors. This means that the connector is
responsible to trandate all callsto the common interface to the externally provided tool.

21.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector
then Section 5.4, “OpenEngSB Tool Domains’ is a good starting point. If there's already a matching
domain for thistool it is strongly recommended to useit. But if thistool requires anew domain it has
to be created. Thisis aso described in Chapter 22, How To Create an Internal Domain.

21.2. Creating a new connector project

To take the burden of the developer creating the initial boilerplate code and configuration, a Maven
archetype is provided for creating the initial project structure. Furthermore, if the new connector is
developed inside of the OpenEngSB repository, a shell script can be found at et ¢/ scri pts/ gen-
connect or . sh for further help in creating a new connector project.

21.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the gen-connector.sh script
executes additional tasks, like the renaming of the resulting project. Furthermore the shell script tries
to make surethat the new project is consi stent with the naming conventions of the OpenEngSB project.

The following parameters have to be specified to execute the correct archetype:

« archetypeGroupld - the groupld of the OpenEngSB connector archetype.
 archetypeArtifactld - the artifactld of the OpenEngSB connector archetype.
 archetypeVersion - the current version of the OpenEngSB connector archetype.

The following parameters have to be defined for the parent of the new connector, which is not only
parent of the connector, but also for the implementation of the domain and al other connectors of
this domain.

« parentArtifactld - the artifactld of the project parent.

The following parameters have to be defined for the domain of the new connector.
 groupld - the groupld of the domain.

» domainArtifactld - the artifactld of the domain.

The following parameters have to be defined for the connector.

o artifactld - the connector artifact id. Has to be "openengsb-domains-<yourDomain>-
<yourConnector>".

32

How To Create an Internal Connector

* version - the package for the source code of the domain implementation. Has to be
"org.openengsb.domains.<yourDomain>".

» domaininterface - The name of the domain interface.
« parentPackage - The package in which the domain interface can be found.
* package - the package for the connector code. Usually <parentPackage>.<yourConnector> is used.

* name - the name of the implementation module. Has to be "OpenEngSB :: Domains ::
<yourDomain> :: <yourConnector>"

Where <yourDomain> has to be replaced by your domain name and <yourConnector> has to be

replaced by the respective connector name.

Note that the archetype will use the artifactld to name the project, but the OpenEngSB convention is
to use the connector name. Therefore you will have to rename the resulting project. Do not forget to
check that the new connector is included in the modules section of the domain parent pom.

21.2.2. Using the gen- connect or. sh shell script

Calling the script should be done from the domain-specific directory. I.e. if your are developing a
new connector for the Notification-Domain your current directory should be donai ns/ noti fi cati on.
Inside your favourite shell execute the script.

notification $../../etc/scripts/gen-connector.sh

The script tries to guess as much as possible from your current location and previous input. Guessed
values are displayed in brackets. If the guessiswhat you want, simply acknowledge with Ret ur n. The
following output has been recorded by executing the script in the domai ns/ not i fi cati on directory:

Domain Name (is natification): <Enter>

Domain Interface (is NotificationDomain): <Enter>

Connector Name: twitter <Enter>

Version (is1.0.0-SNAPSHOT): <Enter>

Project Name (isOpenEngSB :: Domains:: Notification :: Twitter): <Enter>

Only the connector name was set, everything else has been guessed correctly by the script. After this
inputs the Maven Archetype gets called and may ask you for further inputs. Y ou can simply hit Ret ur n
each time, because the values have been already set by the script. If the script finishes successfully the
new connector project has been created and you may start implementing.

21.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

- pom xmi
- src
- main
- java
| -- org

33

How To Create an Internal Connector

| - openengsb
| - domai ns
| - notification
| - twitter
| - interna
| | -- MyServicelnpl.java
| | -- MServicel nstanceFactory.java
| - MyServi ceManager. j ava
-- resources
- META- | NF
| -- spring
| -- connect or - cont ext . xmn
- OSA -1 NF
- 110n
- bundl e_de. properties
- bundl e. properties

The WServi cel npl class implements the interface of the domain and thus is the communication
link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run
the end user) enough information on how to configure a connector, the MySer vi cel nst anceFact ory
class provides the OpenEngSB with meta information for configuring and functionality for creating
and updating a connector instances. The MyServi ceManager class connects connector instances
with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as OSGi
services and adds necessary meta information to each instance. Since the basic functionality is
mostly similar for al service managers, the MySer vi ceManager class extends a common base class
Abst ract Servi ceManager . In addition the Abst r act Ser vi ceManager aso persists the configuration
of each connector, so that the connector instances can be restored after a system restart.

The spring setup in the resources folder contains the setup of the service manager. Here additional
bean setup and dependency injection can be configured.

The OpenEngSB has been built with localization in mind. The Maven Archetype aready generates
two bundl e*. properties files, one for English (bundle.properties) and one for the German
(bundle_de.properties) language. Each connector has to provide localization through the properties
filesfor service and attributes text values. Thisincludes localization for names, descriptions, attribute
validators, option valuesand more. For conveniencetheBundl eSt ri ngs classisprovided on al method
callswhere text is needed for user representation for a specific locale.

21.4. Integrating the Connector into the OpenEngSB
environment

The service manager is responsible for the integration of the connector into the OpenEngSB
infrastructure. The correct definition of this serviceis critical.

34

Chapter 22. How To Create an Internal Domain

This chapter describes how to implement a domain for the OpenEngSB environment. A domain
provides acommon interface and common events and thereby defines how to interact with connectors
for this domain. For a better description of what a domain exactly consists of, take a look at the
architecture guide Chapter 5, Architecture of the OpenEngSB.

22.1. Prerequisites

In caseit isn't known what adomain is and how it defines the interface and events for connectors, then
Section 5.4, “OpenEngSB Tool Domains’ isagood starting point.

22.2. Creating a new domain project

To get devel opers started creating a new domain aMaven archetypeis provided for creating theinitial
project structure. Furthermore, if the new domain is developed in the OpenEngSB repository, a shell
script can befound at et c/ scri pt s/ gen- dormai n. sh as further convenience.

22.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the gen-domain.sh script executes
additional tasks, like the renaming of the resulting project. Furthermore the shell script tries to make
sure that the new project is consistent with the naming conventions of the OpenEngSB project.

The following parameters have to be specified to execute the correct archetype:
 archetypeGroupld - the groupld of the OpenEngSB domain archetype.

« archetypeArtifactld - the artifactld of the OpenEngSB domain archetype.
 archetypeVersion - the current version of the OpenEngSB domain archetype.

Thefollowing parameters have to be defined for the parent of the new domain, whichisnot only parent
of the domain implementation, but also for all connectors of this domain.

e groupld - the groupld of the project parent. Has to be "org.openengsb.domains.<yourDomain>".

« artifactld - the artifactld of the project parent. Has to be "openengsb-domains-<yourDomain>-
parent".

« version - the version of the domain parent, which is usually equal to the current archetype version.

* name - the name of the parent module. Has to be "OpenEngSB :: Domains :: <yourDomain> ::
Parent"

The following parameters have to be defined for the implementation of the new domain.

e implementationArtifactld - the implementation artifact id. Has to be "openengsb-domains-
<yourDomain>-implementation".

35

How To Create an Internal Domain

e package - the package for the source code of the domain implementation. Has to be
"org.openengsb.domains.<yourDomain>".

¢ implementationName - the name of the implementation module. Has to be "OpenEngSB ::
Domains :: <yourDomain> :: Implementation”

Where <yourDomain> has to be replaced by your domain name, which is usually written in lower

case, like e.g. report for the report domain.

Notethat the archetype will use the artifactld to name the project, but the OpenEngSB conventionisto
use the domain name. Therefore you will have to rename the resulting project. Do not forget to check
that the new domain isincluded in the modules section of the domains pom.

22.2.2. Using the gen- domai n. sh shell script

The script should be executed from the domains directory in your OpenEngSB repository.

domains $../etc/scripts/gen-domain.sh

You'll be asked to fill i afew variables the script needs to create the initial project structure. Based
on your input, the script tries to gues further values. Guessed values are displayed in brackets. If the
guessiscorrect, simply acknowledgewith Ret ur n. Asexampl e, thefoll owing output has been recorded
while creating the Test domain:

Domain Name (is mydomain): test <Enter>
Version (is1.0.0-SNAPSHOT): <Enter>
Prefix for project names (is OpenEngSB :: Domains:: Test): <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed by the script. After
giving the inputs, the Maven archetype gets executed and may ask for further inputs. Y ou can simply
hit Ret ur n, asthe values have been already correctly set by the script. If the script finishes successfully
two new Maven projects, the domain parent and domain implementation project, have been created
and setup with a sample implementation for a domain.

22.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

- inplenentation
- pom xm
- src
- nmain
- java
- org
- openengsb
- domai ns
- nmydomai n
- MyDonai n. j ava
- MyDomai nEvents. j ava
- MyDomai nProvi der. j ava
- resources
- META-I NF
| -- spring
| -- nydomai n- cont ext . xm

36

How To Create an Internal Domain

- OSG - I NF
- 110n
- bundl e_de. properties
- bundl e. properties

- pom xmi

The project contains besides simple stubs for the domain interface, the domain events interface and
the domain provider also a resources folder, which contains the spring setup and property files for
internationalization.

Although the generated domain doesin effect nothing, you can already start the OpenEngSB for testing
with mvn clean install pax:provision and the domain will be automatically be picked up and
started.

The spring setup in the resources folder already contains the necessary setup for this domain to work
in the OpenEngSB environment. Furthermore the default implementation proxies for the domain
interface, which forwards all service cadls to the default connector for the domain and the default
implementation of the domain event interface, which forwards all events to the workflow service of
the OpenEngSB are configured.

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. E.g.
theMaven Archetypealready createstobundl e*. properti es files, onefor English (bundle.properties)
and one for the German (bundle_de.properties) language. Each connector has to provide localization
through the properties files. For domains, this only means localization for a name and description of
the domain itself.

22.3. Components

1. Domaininterface - Thisistheinterface that connectors of that domain must implement. Operations
that connectors should provide, are specified here. Events that are raised by this Domain in
unexpected fashion (e.g hew commit in scm system) are specified on the Interface. The Raise
Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation
is put on amethod the events that are specified through the annotation are raised in sequence upon
acal.

2. Domain event interface - Thisis the interface that the domain provides for its connectors to send
eventsinto the OpenEngSB. Theevent interface containsar ai seEvent (SoneEvent event) method
for each supported event type.

3. Domain Provider - The domain provider is a service that provides information about the domain
itself. It is used to determine which domains are currently registered in the environment. Thereis
an abstract class, that takes over most of the setup.

4. Spring context - There are three services, that must be registered with the OSGi service-
environment. First there is the domainprovider of course. Moreover the domain must provide a
kind of connector itself, since it must be able to handle service calls and redirect it to the default-
connector specified in the current context. And finally the domain provides an event interface
for its connectors, which can be used by them to send events into the OpenEngSB. The default
implementation of this event interface simply forwards all events sent through the domain to the
workflow service. But domains can also provide their own implementation of their event interface

37

How To Create an Internal Domain

and add data to events or perform other tasks. Thereis a beanfactory that creates a Java-Proxy that
can be used as ForwardService both for the forwarding of service calls from domain to connector
and for the forwarding of events to the workflow service. The service call ForwardService looks
up the default-connector for the specified domain in the current context and forwards the method-
cal right to it. The event forward service simply forwards al events to the workflow service of
the OpenEngSB.

22.4. Connectors

For information regarding the implementation of connectors for the newly created domain see
Chapter 21, How To Create an Internal Connector.

38

Chapter 23. Prepare and use Non-OSGi Artifacts

Basically, wrapped JARs do not differ in any way from basic jars, besides that they are deployablein
OSGi environments. They are used asregular jar filesin the OpenEngSB. Nevertheless, the wrapping
itself isnot as painless. This chapter triesto explain the process in detail.

23.1. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1

In case that no osginized library is available in the public repositories a package has to be created.
Because of the simplicity of the process it should be done by hand. First of all create afolder with
the name of the project you like to wrap within openengshb/wrapped. Typically the groupld of the
bundle to wrap is sufficient. For example, for a project wrapping al Wicket bundles the folder
org.apache.wicket is created.

. As anext step add the newly created folder as a module to the openengsb/wrapped/pom.xml file

in the modul e section. For the formerly created Wicket project org.apache.wicket should be added
to the module section.

. Now create a pom.xml file and a osgi.bnd file in the newly created project folder.

. The pom.xml containsthe basic project information. As parent for the project the wrapped/pom.xml

should be used. Basicaly for every wrapped jar the project has the following structure;

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l--

OPENENGSB LI CENSE

-->

<proj ect >

<par ent >
<gr oupl d>or g. openengsb. wr apped</ gr oupl d>
<artifact|d>openengsb-w apped</artifactld>
<ver si on>1</ ver si on>

</ par ent >

<properties>
<bundl e. synbol i cName>wr apped_j ar _gr oup_i d</ bundl e. synbol i cNane>
<wr apped. gr oupl d>wr apped_j ar _gr oup_i d</ wr apped. gr oupl d>
<wr apped. artifactld>w apped_j ar_artifact_id</w apped. artifactld>
<wr apped. ver si on>wr apped_j ar _ver si on</ wr apped. ver si on>
<bundl e. nanespace>${ w apped. gr oupl d} </ bundl e. nanmespace>

</ properties>

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>${ wr apped. gr oupl d} </ gr oupl d>
<artifactl|d>org. openengsb. docs. ${ wr apped. groupl d} </artifact!|d>
<ver si on>${ wr apped. ver si on} </ ver si on>

<nanme>${ bundl e. synbol i cNane} </ name>
<packagi ng>bundl e</ packagi ng>
<dependenci es>

<al | _j ars_whi ch_shoul d_be_enbedded />
</ dependenci es>

39

Prepare and use Non-OSGi Artifacts

</ proj ect >

5. The osgi.bnd file contains the OSGi specific statements for the maven-bundle-plugin. While the
default export and import are already handled in the root pom project specific settings have to be
configured here. For example all packages within the bundle-namespace are always exported. This
is for most scenarios sufficient. In addition all dependencies found are automatically imported as
required. Thisis generally not desired. Instead the parts of the library which have to be imported
should be defined separately. The following listing gives a short example how such a osgi.bnl file
can look like. For afull list of possible commands see the maven-bundle-plugin documentation.

#

OPENENGSB LI CENSE

#

Enbed- Dependency: *; scope=conpil e|runtine;type=!ponyinline=true

I mport - Package: sun.m sc;resol ution: =optional,\
javax. servlet;version="[2.5.0, 3.0.0)",\
*:resol ution: =optional

23.2. Tips and Tricks

Although the description above sounds quite simple (and wrapping bundles is simple mostly) still
some nasty problems can occur. This section summarizes good tips and ideas how to wrap bundles
within the OpenEngSB.

* The best workflow to wrap a bundle is according to our experiences, to execute the previously
described steps and simply start the OpenEngSB (pax:provision). Either it works or creates a huge
stack of exceptions with missing import statements. Simply try to fulfill one problem, than start
again till all references are resolved.

« Embedding artifacts is nothing bad. Although it is recommended to use all references artifacts of a
bundle directly as OSGi components it can be such a pain sometimes. Some references are simply
not required by any other bundle or are too hard to port. In such cases feel free to directly embed
the dependencies in the wrapped jar.

40

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

Chapter 24. Release and Release Process

This section provides a step by step description to execute a release of the OpenEngSB. It is relevant
for everyone marked in the OpenEngSB Team List as release manager because only they have the
required rights to execute the following steps.

24.1. Releases and the OpenEngSB

Every release of the OpenEngSB consists of the following parts: RELEASE.MAJOR.MINOR.TY PE.
Every release of thistypeisavailableat Maven Central. Optionally SNAPSHOT isappended. Snapshot
releases are avail able from the Sonatype Snapshot repository. This section explainswhat each modifier
means and how it is used within the OpenEngSB.

SNAPSHOTS: Snapshots are always avail able from the latest build of the OpenEngSB. They aretaken
from the master branch automatically at each commit.

TYPE: Type could be MX, RCX or RELEASE, where X is a number. While RELEASE marks a
final release, ready for use in your production environment, M and RC are typically not ready for
production. M standsfor Milestonerelease and is cut every two weeksto present the current state of the
OpenEngSB and allow a coarse grained planning and roadmap for the OpenEngSB team. RC, release
candidates, are handled differently. After everything is finished and the OpenEngSB teams think that
the current work is ready for arelease, we provide arelease candidate and invite everyone to test the
release. If there are any issues with the release we fix them and provide another release candidate.
During this process no new features, but only bug fixes are handled. We continue this process as long
asthere are no new bug reportsfor aRC for two weeks. Then we re-rel ease the | atest rel ease candidate
asfinal release. This processonly appliesfor RELEASE and MAJOR. MINOR is handled differently,
as explained later on.

RELEASE is aincreasing number used for mayor changes within the OpenEngSB architecture. In
addition all methods and interfaces marked as deprecated are removed during such arelease. Itisaso
possiblethat a REL EA SE does not enhance any mayor architectural concept but is only used to get rid
of all the deprecated methods, generated during MAJOR releases.

MAJOR is the main feature development number of the OpenEngSB. Each release containing new
features will be aMAJOR release. Nevertheless, between MAJOR rel eases architectural concepts are
not removed but only set to deprecated. This means they only enhance functionality but try to not
break with former releases.

MINOR releases are bug-fix releases. They do not include any new features but only fix bugs within
the OpenEngSB. They have no release plan, but are simply cut after each bug-fix.

To visuadize the explained process the following example. Assume we have released
openengsb-1.0.0.RELEASE. Now we're working on openengsb-1.1.0.RELEASE. Therefore we start
developing openengsb-1.1.0.M1 which will be released in two weeks. During the development of
1.1.0.M1 a bug occurs at openengsb-1.0.0.RELEASE. During the development the bug is fixed and
openengsb-1.0.1.RELEASE isreleased. After 1.1.0.M 1 we require three additional milestone releases
to get feature releases. Six weeks after 1.1.0.M1 we'll release 1.1.0.RC1. From now on we continue
to develop 1.2.0.M1 (or 2.0.0.M 1, depending on the gravity of the changes) and wait for feedback on

41

http://openengsb.org/team-list.html
http://repo1.maven.org/maven2/
https://oss.sonatype.org/content/groups/public/

Release and Release Process

1.1.0.RC1. Now a bug-report occurs for 1.0.1.RELEASE. We fix the bug, release 1.0.2.RELEASE
with thefix. If it also affects 1.1.0.RC1, we fix the bug there too and release 1.1.0.RC2 (still working
on1.2.0.M1(!)). Now assume that some other bug reports are received for 1.0.0.RC2. Wefix them and
release 1.1.0.RC3. In the meantime we finished 1.2.0.M 1 and start work on 1.2.0.M2. Now two weeks
after therelease of 1.1.0.RC3 without any new bug-reportswere-release 1.1.0.RC3to 1.1.0.RELEASE
(starting the game again from the beginning).

24.2. Git Branches

For the best cooperation between Git and Maven the OpenEngSB team has devel oped itsown workflow
with branches during releases. For different project phases (milestone, RC, final, support) different
workflows apply.

24.2.1. New Feature Workflow

For new features the already described workflow apply. This means create a feature branch based on
the integration branch, add your commits and create a pull request if you're finished. Y our changes
will be merged (after review) to the integration branch. From time to time the integration branch ins
merged into the master, which is pushed as snapshots to sonatype.

24.2.2. Milestone Releases

For milestone releases about one day before a planned release a openensb-1.X.0-release branch is
created. This branch can be forward merged to integration as often as liked (no backward merges are
alowed). If al final bugs and changes are done the MX version is released on this branch and the
branch is merged into integration and deleted again. During this process any number of new features
are merged into integration, without affecting the release any longer.

24.2.3. Release Candidates

RCs are the pre-level for final releases. This means, after the openengsb team decides a release is
ready to go, two new branch are created from the latest commit AFTER the milestone release (where
the mvn versions are set back to the snapshot version): openengsb-1.X.x-dev and openengsb-1.X .x-
release. openengsb-1.X.x-dev is used for bug-fixes. Every fix which should also be merged into
the integration branch/master should be branched off openengsb-1.X.x-dev and afterewards merged
into integration and openengsh-1.X .x-dev. If arelease is ready openengsb-1.X.x-dev is merged into
openengsb-1.X .x-release, where the rel ease takes place. BUT no merge from openengsb-1.X .x-release
to openengsb-1.X .x-releaseis allowed!

24.2.4. Final and Support Releases

All support and final releases are handled exactly as the RC releases between the openengsb-1.X .x-
dev and openengsh-1.X .x-release branch.

24.3. Configure Maven

For the right rights to deploy to maven central and upload maven site to openengsb.org the following
entries are required in your ~/.m2/settings.xml file:

42

Release and Release Process

<settings>
<server>
<i d>sonat ype- nexus- snapshot s</i d>
<user name>SONATYPE_USERNAME</ user nanme>
<passwor d>SONATYPE_PASSWORD</ passwor d>
</ server>
<server>
<i d>sonat ype- nexus- st agi ng</i d>
<user nanme>SONATYPE_USERNAME</ user nane>
<passwor d>SONATYPE_PASSWORD</ passwor d>
</ server >
<server>
<i d>OpenengsbWebSer ver </i d>
<user nane>0OPENENGSB_SERVER_ USERNANME</ user nane>
<passwor d>OPENEGNSB_SERVER_PASSWORD</ passwor d>
</ server>
<profil es>
<profile>
<i d>mi | est one</i d>
<properties>
<gpg. passphr ase>GPG_PASSPHRASE</ gpg. passphr ase>
</ properties>
</profile>
<profile>
<i d>rel ease</i d>
<properties>
<gpg. passphr ase>GPG_PASSPHRASE</ gpg. passphr ase>
</ properties>
</profile>
<profile>
<id>final </id>
<properties>
<gpg. passphr ase>GPG_PASSPHRASE</ gpg. passphr ase>
</ properties>
</profile>
</profiles>
<settings>

All the usernames and passwords can be retrieved from someone marked as administrator in the
OpenEngSB Team List.

In addition you have to have a GPG key for your mail address (the same you're using to commit to the
OpenEngSB source repository which is uploaded to the MIT Key Server.

24.4. Adapt Jira

A wordinfront, how Jiraisused for the OpenEngSB. Jiraisused for bug tracking and rel ease planning.
ONLY each Milestone release has its own target. Release candidates and final releases are handled
differently. Since we release RC and MINOR releases quite often its much too much administration
work to keep JRA up to date.

Ok, knowing that the release processis simple:
« If you release a milestone release close the release target (e.g. 1.0.0.M1)
 If you release arelease candidate create a VERSION.RCX release target and close the old one.

 If yourelease afinal release (MAJOR RELEASE) create a new releasetarget 1.0.X.RELEASE.

43

http://openengsb.org/team-list.html
hkp://pgp.mit.edu/

Release and Release Process

* If you release aminor release close the 1.0.X.RELEASE target and create 1.0.(X+1).RELEASE.

24.5. Perform the release

Performing a release is quite ssimple, because of the maven release plugin and some scripts. Simple
follow these steps:

« 1) Execute .Jetc/scripts/release-[final|milestone].sh with the path to your repository (e.g. ~/
openengsb

« Now that the artifacts are available for sync to maven central you haveto push them from the staging
to the final repository. Therefore follow the steps as explained _here

« |If everything works fine execute git push;git push --tags
24.6. Spread the News

Post a message to the OpenEngSB twitter account with the following content:

openengshb- VERSI ON "NAME" rel eased, closing XX issues (JI RA_RELEASE REPORT_SHORT_URL) .
Try the new features now http://openengsb.org

24.7. Prepare Changelog

Finally the CHANGEL OG.md file hasto be updated. Therefore the following template with the correct
version have to be copied in the current changelog file (the latest version always has the most "on-
top" position in the text file):

openengsh- VERSI ON

Bug fixes
* [e.g.] Fix problemwith setting files

New Proj ects
* [e.g.] openengsb-core-taskbox

Renoved Projects
* [e.g.] openengsb-donai n-scm

Upgraded Projects
* [e.g.] org.apache. wi cket/w cket-*/1.4.13
* [e.g.] org.eclipse.jgit/org.eclipse.jgit/0.9.14

Remvoed External References
* [e.g.] javax.ejb/com springsource.javax.ejb

New Features & Changed Behavi our
* [e.g.] Added possibility to del ete workfows

Depricated or Renpbved Features
* [e.g.] org.openengsb. domai n. scm doSonet hing() is renoved

The following sections explain shortly what changes belong to which part of the changelog.

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide

Release and Release Process

24.7.1.

24.7.2.

24.7.3.

24.7.4.

24.7.5.

24.7.6.

24.7.7.

Bug Fixes

This section should contain ashort description of all things which does not work in apreviousversion,
but inthis one. Bugswhich arefixed and introduced during the development (e.g. in amilestonerelease
do not have to be added here. Only if they exist in a previous final release version. The description
should make it clear for the client which bug we address. Anissue number will help but is not requierd.

New Projects

All new projects added to the OpenEngSB (or in any module section in other words) should be listed
here, sinceitisvery likely that the user hasto adapt its project according to them. A move of a project
should be logged as add/remove. The artefact name is enough to be mentioned here.

Removed Projects

All projects removed from the OpenEngSB (or from any module section in other words) should be
listed here, sinceit is very likely that the user has to adapt its proejct according to them. A move of a
project should be logged as add/remove. The artefact name is enough to be mentioned here.

Upgraded and New External References

Itisvery likely that the client reugiresto use the versions directly anywhere in the project. It ispossible
that he wants to stay in snyc in this versions with the OpenEngSB project. Therefore they should be
listend here. A maven like artifact description should be used here.

Remvoed External References

Itisvery likely that the client reugiresto usethe versions directly anywherein the project. It ispossible
that he wants to stay in snyc in this versions with the OpenEngSB project. Therefore they should be
listend here. A maven like artifact description should be used here.

New Features and Changed Behaviour

This section should SHORTLY show a user where he has new possibilities or where he has to adapt
his current code or be especially careful with changes.

Depricated or Removed Features

Depricated or removed features points the user to points in the code where his code will very likely
break. It should be clear for him what he hasto do or change.

45

Chapter 25. Admin

This section is relevant for everyone marked in the _OpenEngSB Team List as administrator. If you
require anything of the following points to be done please write to the openengsb-dev mailing list or
send amail directly to one of the administrators.

25.1. Infrastructure

25.1.1.

25.1.2.

25.1.3.

25.1.4.

25.1.5.

25.1.5.1.

25.1.5.2.

This section describes the OpenEngSB infrastructure and the relevant parts to manage it.

OpenEngSB Infrastructure Server

The main server hosting our selfmaintained infrastructure runs Ubuntu Linux and is hosted under the
domain "openengsb.org”. The server is mainained remotely via SSH [pw:server].

An apache2 server processes all requests and forwards it to the corresponding service. The config-
file that connects the subdomains to the corresponding services is located in /etc/apache?/sites-
enabled/000-default.

This forwards point to a directory in /var/www that redirects the browser to the correct page (like
build.openengsb.org -> build.openengsb.org/hudson) The tomcat-server for the homepage is located
in /var/opt/tomcat. JIRA islocated in /var/opt/atlassian-jira-enterprise-4.1.2/ Further all passwd-files
to control http-access are located in /etc/apache2

OpenEngSB Build

Hudson is accessible at http://build.openengsb.org. To become an admin create account and write mail
to one of the current admins.

OpenEngSB Issuetracker

JIRA is accessible at http://issues.openengsb.org. To become an admin create account and write mail
to one of the current admins.

OpenEngSB git

The github islocated at http://git.openengsb.org. To become an admin create a github-account (if you
don't have one) and write mail to one of the current admins.

OpenEngSB Maven

internal

Theinternal maven-repo is accessible at http://maven.openengsb.org. Use [pw:nexus] to login.
external

The externa maven-repo hosting released artifacts is located at http://oss.sonatype.org. Use
[pw:maven] to login.

46

http://openengsb.org/team-list.html
http://build.openengsb.org
http://issues.openengsb.org
http://git.openengsb.org
http://maven.openengsb.org
http://oss.sonatype.org

Admin

25.1.6. OpenEngSB Mailinglist

To obtain admin-access for the mailing lists register google-account (if you don't have one), join
mailinglists and write mail to one of the current admins

25.2. Logo Locations and Upgrade

This section describes the locations of the logo and what have to be upgraded to the latest logo. The
following itemsare used in this section and are (should be) all availablewithin openengsb/etc/branding.

 openengsh.png: The full logo of the OpenEngSB in png format. The size is not too important. At
every location used it is resized according to the requirements automatically.

» openengsb_small.png: A reduced version of the OpenEngSB logo. The most important thing with
thislogo isthat it have to be rectangular, since some cases require this.

« openengsh.ico: This is the openengsb_small.png logo convert to an ico file. Threfore scale the
openengsb_small.png. On unix install imagemagic and png2ico and follow the following steps.
Before you start upate openengsb_smal.png in et ¢/ br andi ng

convert -resize 64x64 openengsb_small.png openengsb64x64.png
convert -resize 32x32 openengsb_small.png openengsb32x32.png
convert -resize 16x16 openengsb_small.png openengsb16x16.png
png2ico openengsb.ico openengsbh16x16.png openengsb32x32.png openengsh32x32.png

25.2.1. External Infrastructure
This section describes which tools have to be upgraded and how thisis done.
« Jira: Use openengsb_small.png as project logo.

» Twitter: Use openengsb.png as background and openengsb_small.png as logo.

Github: Upgrade gravatar with openengsb_icon.png to upgrade openengsb@gmail.com.

Facebook: Use openengsh.png for the group logo.

Google Groups: Use openengsb_small.png for the group logos (in all three lists).

25.2.2. Internal Management Application

This section covers how to upgrade the logos in the internal management application located within
openengsb/ui/web.

 src/main/resources/openengsh.png (openengsb.png)
 src/main/resources/openengsh.ico (openengsh.ico)
25.2.3. Documentation

Manual, Maven Site and all additional presentations of the OpenEngSB are covered within this section
describing how and where to upgrade alogo.

47

http://openengsb.org/community/mailinglists.html

Admin

 docs’homepage/src/site/resources/images/openengsh.png uses openengsh.png to present a banner
on the homepage.

« docg/skin/src/main/resources/images/openengsh.ico contains openengsb.ico which is presented as
favicon on openengsb.org

» docs/manual/src/main/docbx/resources/images/openengsh.png contains openengsb.png which
should be presented on the html and pdf documentation of the OpenEngSB.

48

Part V. Appendix

49

Appendix A. Java Coding Style

A.l. Sun Coding Guidelines

The OpenEngSB Coding Guidelines are based upon the Code Conventions for the Java Programming
L anguage. There are some additions and deviations for this project.

A.1.1. Line length

A line length of 80 was standard 10 years ago, but with increasing screen size and resolution alength
of 120 is more reasonable.

A.1.2. Wrapping

Use the auto-formatter of your IDE. Import the Eclipse Formatter file.
A.1.3. Number of declarations per line
Only one declaration per lineis alowed.

A.1.4. Declaration placement

Declare variables where they are needed. It's easier to read and restricts the scope of variables. Don't
overshadow variables.

A.1.5. Blank lines

The body of a method should not start with a blank line.

A.2. General

A.2.1. File format

Every Java file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of
four spaces, tab-stops are not allowed.

A.2.2. Header

Every source file has to start with this header:

[**

Copyright 2010 OpenEngSB Division, Vienna University of Technol ogy
Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.

You may obtain a copy of the License at

http://ww. apache. org/ i censes/ LI CENSE-2. 0

50

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://dev.openengsb.org/resources/eclipse/formatter.xml

Java Coding Style

Unl ess required by applicable |law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

*/

A.2.3. Duplication

Code duplication hasto be avoided at all costs.

A.2.4. Use guards

Guards are a possihility to reduce the amount of nesting. Heavily nested code is much harder to read.
Bad:

public void foo() {
if (conditionA) {
if (conditionB) {
if (conditionC) {
/1 do some work

}
} else {
t hrow new MyException();
}
}
}
Good:

public void foo() {
if (!conditionA) {
return;

}

if (!conditionB) {
t hrow new MyException();
}

if ('conditionQ {
return;

}

// do sone work

A.2.5. Keep methods short

Methods longer than 40 lines are candidates for refactoring. A method should only do one thing and
has to be easily understandable. The number of arguments should be minimized. A method should
only be at asinglelevel of abstraction.

A.2.6. Use enums

Prefer typesafe enumerations over integer constants.

51

Java Coding Style

A.2.7. Avoid use of static members

Static membersareasign of adesign error becausethey arelike global variables. It'sfineif you declare
aconstant as final abstract of course.

A.2.8. Use fully qualified imports

Don't import org.example.package.*, instead import the needed classes.

A.2.9. Never declare implementation types

A.2.10.

A.2.11.

A.2.12.

A.2.13.

A.2.14.

Use interfaces or the abstract base class instead of concrete implementation classes where possible.
Don't write:

ArrayLi st<String> names = new ArrayList<String>(); ‘
Instead use the interface name:

Li st<String> names = new ArrayList<String>(); ‘
Thisis especialy important in method signatures.
SerialVersionUID

Don't declare serialVersionUID just because your IDE tells you. Have a good reason why you need
it. This can cause bugs that are hard to detect.

Restrict scope of suppressed warnings

If you have to suppress a warning make sure you give it the smallest possible scope. This means you
should never annotate a whole class with @SuppressWarnings. A method may be acceptable but you
should try to annotate the problematic statements instead.

Use String.format()
Use String.format() instead of long concatenation chains which are hard to read.

Array declaration style

Always use

Type[] arrayNaneg; ‘

instead of the C-like

Type arrayNane[]; ‘

Comments

Don't make funny comments, be professional. All comments have to be in English. Comment what
methods do, not how they do it. Do not comment what is already stated in code.

52

Java Coding Style

A.3. Naming

A.3.1. Interfaces

Interfaces are not marked by starting their nameswith |. Thisexposes moreinformation than necessary
and is not Java-like.

A.3.2. Don't abbreviate

Do not use abbreviations if it's not a project wide standard. Long method names are preferable to
inconsistency. With automatic code completion thisisn't a problem anyway.

A.4. No clutter

« Exception/Log Messages have to be concise. Don't end messages with "...".

« Don't overuse FINAL, use it where you have a good reason something has to be final. Although it
doesn't hurt to declare everything asfinal it clutters the code.

» Don't use history tables in source files. Use the SCM system if you are interested in the changes
of afile.

e Don't use the JavaDoc author tag. Also use the SCM system.

« Don't declare unnecessary constructors, especially the empty default constructor.

» Don't make implicit calls explicitly, i.e. calling super(); in every constructor.

» Don't specify modifiersthat are implicit, i.e. don't make methods in interfaces publ i ¢ abstract .
» Dontinitialize fields with null, they are automatically initialized with null.

» Don't use bannersin comments.

« Don't use closing brace comments, i.e. } // end if, they are asign of too long methods.

< Don't comment out code and commit it. This confuses programmers why it is there. Simply delete
it, it's still present in the SCM history.

A.5. Exception Handling

« Don't log and throw. Either a exception should be logged or thrown to be processed at a more
appropriate place.

« Don't swallow exceptions silently. If you have to do it, you have to make a comment stating the
reason.

* Use runtime exceptions where possible.

* Wrap exceptionsin a RuntimeException if you don't want to specify the Exception in your method
signature and you can't handleit.

53

Java Coding Style

Write meaningful exception message.

A.6. Tests

A.6.1. General

Make use of JUnit 4 features, e.g. @T est(expected = SomeException.class)
Tests should not output anything. They have to be automatically verified.
Don't catch exceptions just to fail manually. Declare the method to throw the exception.

Install a shutdown hook for test data files. This assures that they will be deleted and the project
remainsin aclean state.

Use Mockito for mocking.

Tests should have descriptive method names. It should be deducible what will be tested. Bad:
testError().Good: i nval i dl nMessage_Shoul dRet ur nEr r or Response() .

A.6.2. Naming Scheme

The Maven profiles for running the tests are configured to filter based on the naming of the test class.
The package layout is just afurther convenience for the developer for running the tests manually.

Unit Tests test one class/method/feature in isolation from their dependencies by using test doubles
as replacement. They should be fast and need no special environment setup for execution.

Filenames end with Test.java
Located in the normal package structure, i.e. out er. proj ect . package. i nner . pr oj ect . package

Integration Testscombineindividual software modulesto test their interaction with each other. They
do not need a special environment setup for execution.

Filenames end with I T .java
Located inout er . proj ect . package. i t.inner. proj ect. package

User Tests need a special execution environment and thus are not run automatically during any
maven phase.

Filenames end with UT .java

Located inout er . proj ect . package. ut . i nner . proj ect . package

A.7. XML Formatting

A.7.1. File Format

Every XML file has to be UTF-8 encoded and has to use UNIX line endings. |ndentations consist of
TWO spaces, tabstops are not allowed. The line length shouldn't exceed 120 characters.

http://code.google.com/p/mockito/

Java Coding Style

A.7.2. Eclipse Settings

If you use Eclipse please choose these settings for your OpenEngSB workspace:

ﬂ Preferences l =l -th

type filter text Editor =T > =

Save Actions -
XML editing preferences. Mote that some preferences may be set on the

Syntax Colerin
4 g Structured Text Editors preference page.

Temnplates
Typing
- Installed JREs Formatting
JUnit Line width: 120
Properties Files Editc [l Split multiple attributes each on a new line
Java EE

["] Align final bracket in multi-line element tags
[¥] Preserve whitespace in tags with PCDATA content

Plug-in Development

Remote Systems

. Run/Debug [] Clear all blank lines
> Server [¥]Insert whitespace before closing ernpty end-tags
. Tasks () Indent using tabs
» Team (@ Indent using spaces
Terminal [J | |- e
> Usage Data Collector Indentation size: 2
Validation Content assist
: Web . -
Wb Senices [¥] Automatically make suggestions
. XDoclet E Prompt when these characters are inserted: <=:
a XML . -
D7D Files Suggestion strategy: Strict ot
XML Catalog Grammar Constraints
a XML Files [¥] Use inferred grammar in absence of DTD/Schema
» | Editor
Yalidation
- XML Schema Files
:» XPath
. XSL m
- - - [Restore Qefaults] [Apply]
@j [0K] ’ Cancel]

Eclipse XML Settings

A.7.3. Recommended Readings
* Clean Code, Robert C. Martin, 2008
« Effective Java Second Edition, Joshua Bloch, 2008

e 7 tipson writing clean code

http://www.garshol.priv.no/blog/105.html

Appendix B. Writing Code

This chapter isintended for developers. There are no special prerequisites. Each part describes what
adeveloper has to look at in specific for the OpenEngSB.

B.1. Maven POM files in the OpenEngSB

Following the guidelines of Maven Central, how a pom should be designed it is required to add the
following tags into every and each pom file:

* modelVersion
e groupld

* artifactld

e version

* packaging

* name
 description

o url

* licenses

* scm/url

* scm/connection
» scm/developerConnection

The following listings shows an example of these params for atypical OpenEngSB pom.

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. openengsb. cor e</ gr oupl d>
<artifactld>openengsh-core-parent</artifactld>
<ver si on>1. 1. 0- SNAPSHOT</ ver si on>
<name>QCpenEngSB :: Core :: Parent</nanme>
<packagi ng>ponx/ packagi ng>
<description>Parent project for all OpenEngSB Core cl asses</description>
<url >http://ww. openengsb. org</url >
<l i censes>
<license>
<name>Apache 2</nane>
<url >http://ww:. apache. org/licenses/LI CENSE-2. 0. t xt </ url >
<di stribution>repo</distribution>
</license>
</licenses>
<scnp
<connection>scmgit:git://github. com openengsb/ openengsb. gi t </ connecti on>
<devel oper Connection>scmgit:git@ithub. com openengsh/ openengsb. gi t </ devel oper Connecti on>
<url >http://github. conf openengsb/ openengsbh</url >

56

Writing Code

</ scnp

57

Appendix C. Recommended Eclipse
Plug-ins for Developers

The following plug-ins for Eclipse are recommended for the development of the OpenEngSB. If not
otherwise stated we recommend the latest stable version of the plug-ins. For information about the
basic setup of this plug-ins please take a look into the corresponding plug-in documentation. This
section only gives hints for setup if it is OpenEngSB specific.

C.1. Properties Editor

The properties editor can be used to edit the properties files used for internationalization and
automatically escapes special characters, like the German "U".

C.2. Spring IDE

Spring IDE adds support for the Spring Framework to the Eclipse platform. Especially editing the
XML configuration files becomes a lot easier, as this plug-in provides code completion and other
useful features.

C.3. Eclipse CS

The checkstyle plugin integrates checkstyle into Eclipse. Conformance with checkstyle criteriahasto
be checked before each push to the repository, so integrating the check into the IDE helps developers
to already conform to the checkstyle criteria during development. Y ou have to configure the plug-in
to use our checkstyle configuration file, which can be found here and at /tooling/checkstyle/src/main/
resources/checkstyle.xml starting from the root directory of the OpenEngSB.

C.4. Drools

The Drools plug-in is handy if you want to edit workflows or Drools rules, because it provides syntax
highlighting for rules and a graphical editor for workflows.

58

http://marketplace.eclipse.org/content/properties-editor-0
http://marketplace.eclipse.org/content/spring-ide
http://marketplace.eclipse.org/content/checkstyle-plug
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/tooling/checkstyle/src/main/resources/checkstyle.xml
http://marketplace.eclipse.org/content/jboss-drools

Appendix D. Writing Documentation

This chapter isintended for developers who write documentation. There are no special prerequisites.
Part one describes how a chapter should be structured. Part two discusses how domains and connectors
should be document. Part three describes how Docbook is used at OpenEngSB.

D.1. General Documentation Guidelines

A chapter should consist of these parts:

Introduction
It should explained who the target audience for this chapter isand in what case this chapter should
be read. There should also be a basic summary of what this chapter is about.

Prerequisites
Any prerequisites should belisted. Link to the appropriate chapter or to awebsiteto give the reader
agood starting point in case they need to learn something else first.

Context
In the context section the reader should learn in which context this chapter is applicable. If
necessary abbrevations and acronyms used in this chapter can be explained here.

Content
The actual content of this chapter. This should be structured in as many sections as appropriate.

Example
If possible there should be an example to illustrate the points of the chapter.

Common Problems
If there are some known pitfalls or bugs they should be described in this section.

Closing Remarks
In this section the content of the chapter can be summarized once more. The reader should get
information on what to do next.

It is not necessary that every part is a docbook section. Parts can be combined if it seems appropriate.

D.2. Document a domain or connector

D.2.1. Domain

Each domain getstheir own directory in the user guide at dorai ns/ <t he- domai n- nane>. The domain-
specific documentation should be put in a file named domai n. xni . The directory will be used to
document connectors for the domain.

The documentation of a domain should at least consist of the following parts:

Description
Describe briefly what the purpose of the Domainis.

59

Writing Documentation

Functional interface
Thelink to the actual javainterface (and any domain models used in the interface) at Github. The
domain interface and model s should have enough Javadoc to explain the usage.

Events

If the domain adds new events to the OpenEngSB, the link to the events package at Github should
be provided. The meaning of each events should be documented through the Javadoc at the actual

class.

D.2.2. Connector

A connector for a specific domain should be documented in the domain-specific directory. Add anew
file with the unigue name of the connector.

The documentation of a connector should at least conisst of the following parts:

Description

Provide a description of the external tool and its purpose.

External tool configuration
A section on how to configure the actual external tool for usage with the OpenEngSB has to be

provided.

Support for domain interface
Any deviation to the provided functionality of the domain should be documented. E.g a connector
may only implement parts of the domain interface.

D.3. Using Docbook

Thisis not a DocBook manual but rather an explanation what type of docbook tags are used in this
documentation. If you are new to DocBook you should read DocBook 5: The Definitive Guide.

D.3.1. Tags

DocBook has many tagsto choose from. Thislist describes which tags should be used in which cases.

Tag

<command>

<envar>

<emphasis>

<filename>

<guibutton>

Description

Used for executables

Used for environment variables

Used to emphasize words in a sentence

Used for files and directories

Used to describe buttonsin a GUI

Example

Type <command>Is</command> to get the
contents of the directory.

PATH

This chapter explains only the very basi cs of
Git.

You can set environment variables in
<filename>~/.profile</filename>.

Press <guibutton>Next</guibutton> to
continue with the process.

60

http://www.docbook.org/tdg5/en/html/docbook.html

Writing Documentation

Tag
<guilabel>

<guimenu>

<itemizedlist>

<listitem>

<option>

<orderedlist>

<para>

<replaceable>

<link>

<xref>

<userinput>

<warning>

Description

Used to describe labelsin a GUI

Used to describe menusin a GUI

Used for bullet typelists

Used for entriesin alist

Used for options of commands

Used for numbered lists

Used for paragraphs

<programlisting> Used to display code (e.g. XML or
Java). Generally it is a good idea to
wrap the contents of this tag in a

CDATA section.

Used for placeholdersin examples

Used for links to external resources

Used for internal links

Used for data which is entered by the

user

Used for warnings about a chapter

D.3.1.1. Including an image

Images can be included in this way:

<medi aobj ect >

Example

Select <guilabel>Copy projects into
workspace</guilabel >

Go to <guimenu>File</guimenu>,
<guimenu>Import...</guimenu>.

<itemizedlist><listitem>0One</
listitem><listitem>Two</listitem></
itemizedlist>

<itemizedlist><listitem>0One</
listitem><listitem>Two</listitem></
itemizedlist>

<command>mvn</command>
<option>clean</option> is used to clean the
project.

<orderedlist><listitem>0One</
listitem><listitem>Two</listitem></
orderedlist>

<para>Thisis a paragraph.</para>

<programlisting><!
[CDATA[System.out.printin("Hello,
world!");]]<</programlisting>

Type <command> <replaceable>/path/to/
maven</repl aceable>

You should read <link xlink:href="http://
www.dochbook.org/tdgs/en/html/
docbook.html">DocBook 5: The Definitive
Guide</link>.

This inserts a link to the description
of the the OpenEngSB <xref
linkend="architecture" />.

Type <userinput>n</userinput> to
overwrite the default values.

<warning><para>This chapter is out of
date.</para></warning>

61

Writing Documentation

<i mageobj ect >
<i magedata i d="new' fileref="graphics/testclient_nessage. png"
format ="png" wi dt h="400" align="center" />
</ i mageobj ect >
<capt i on>Messagi ng</ capti on>
</ medi aobj ect >

D.3.1.2. Using atable

There are two types of tables. Normal tables (<table>) and informal tables (<informaltable>)which
don't have a caption. Using informal tables should be fine most of the time. Example:

<i nformal t abl e>
<col gr oup>
<col wi dth="50" />
<col wi dth="100" />
</ col gr oup>
<t head>
<tr>
<t d>
Name
</td>
<t d>
Descri ption
</td>
</[tr>
</t head>
<t body>
<tr>
<t d>
tabl e
</td>
<t d>
Atable with a caption
</td>
</tr>
<tr>
<t d>
informal t abl e
</td>
<t d>
A table without a caption
</td>
</[tr>
</t body>
</informal tabl e>

D.3.1.3. Generating the documentation

To build the documentation maven with some pluginsisused. The full documentation can be generated
in one simple step:

cd docs

mvnclean install -Pdocs

The documentation can be found in docs/ t ar get / docbkx in HTML and PDF format.

62

Appendix E. License

Apache License
Version 2.0, January 2004

http://ww. apache. org/ | i censes/

TERVMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON

1. Definitions.

"Li cense" shall nean the ternms and conditions for use,
reproduction, and distribution as defined by Sections 1 through

9 of this docunent.

"Licensor” shall nean the copyright owner or entity authorized

by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and al
other entities that control, are controlled by, or are under
comon control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect,
to cause the direction or managenment of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nore of the outstanding shares, or (iii) beneficial ownership

of such entity.

"You" (or "Your") shall nean an individual or Legal Entity

exerci sing perm ssions granted by this License.

"Source" formshall nmean the preferred form for neking
nodi fications, including but not limted to software source code,

docunent ati on source, and configuration files.

"Object" formshall mean any formresulting from mechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation

and conversions to other nedia types.

"Work" shall mean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a

copyright notice that is included in or attached to the work

(an exanple is provided in the Appendi x bel ow).

License

"Derivative Wrks" shall nean any work, whether in Source or
oject form that is based on (or derived fron) the Wrk and
for which the editorial revisions, annotations, elaborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nmerely link (or bind by nane) to the interfaces of, the Wrk

and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Wrk and any nodifications or
additions to that Wirk or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity

aut hori zed to submt on behal f of the copyright owner. For the
purposes of this definition,

"submitted" neans any formof electronic, verbal, or witten
conmuni cation sent to the Licensor or its representatives,
including but not limted to comruni cation on el ectronic mailing
lists, source code control systens, and issue tracking systens
that are managed by, or on behal f of, the Licensor for the

pur pose of discussing and inproving the Wrk, but excluding
communi cation that is conspicuously marked or otherw se
designated in witing by the copyright owner as "Not a

Contri bution.™"

"Contributor" shall nmean Licensor and any individual or Lega
Entity on behal f of whoma Contribution has been received by

Li censor and subsequently incorporated within the Wrk

Grant of Copyright License. Subject to the ternms and conditions
of this License, each Contributor hereby grants to You a
perpetual, worl dwi de, non-excl usive, no-charge, royalty-free,

i rrevocabl e copyright |icense to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or

oj ect form

Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocabl e
(except as stated in this section) patent |license to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Work, where such license applies only to those patent clains
l'icensabl e by such Contributor that are necessarily infringed by

their Contribution(s) alone or by conbination of their

64

License

Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Wirk or a Contribution incorporated within the Wrk

constitutes direct or contributory patent infringenment, then any
patent |icenses granted to You under this License for that Work

shall terminate as of the date such litigation is filed.

Redi stri bution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any nmedium w th or w thout
nmodi fications, and in Source or Cbject form provided that You

nmeet the follow ng conditions:

(a) You must give any other recipients of the Work or

Derivative Wrrks a copy of this License; and

(b) You nmust cause any nodified files to carry prom nent notices

stating that You changed the files; and

(c) You rmust retain, in the Source form of any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source form of the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Wrks that You distribute
must include a readabl e copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at |least one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Works; or, within a display generated by the
Derivative Works, if and wherever such third-party notices
normal |y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Wirks that You distribute, alongside or as an addendumto
the NOTICE text fromthe Wrk, provided that such additional
attribution notices cannot be construed as nodi fying the

Li cense.

You may add Your own copyright statenent to Your nodifications
and may provide additional or different |icense terns and
conditions for use, reproduction, or distribution of Your

modi fications, or for any such Derivative Wrks as a whol e,

65

License

provi ded Your use, reproduction, and distribution of the Wrk

otherwi se conplies with the conditions stated in this License.

Submi ssi on of Contributions. Unless You explicitly state
otherwi se, any Contribution intentionally subnmtted for
inclusion in the Wrk by You to the Licensor shall be under the
terms and conditions of this License, w thout any additiona
ternms or conditions. Notwi thstandi ng the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenment you may have executed with Licensor regarding such

Contri butions.

Trademarks. This License does not grant perm ssion to use the
trade names, tradenmarks, service marks, or product nanes of the
Li censor, except as required for reasonable and customary use
in describing the origin of the Work and reproduci ng the content
of the NOTICE file.

Di scl ai ner of Warranty. Unless required by applicable |aw or
agreed to in witing, Licensor provides the Wrk (and each
Contributor provides its Contributions) on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied, including, without limtation, any warranties or

condi tions of TITLE, NON | NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ning the appropriateness of using or redistributing the
Work and assume any risks associated with Your exercise of

perm ssi ons under this License.

Limtation of Liability. In no event and under no |egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
damages for loss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other commercial damages or | osses),
even if such Contributor has been advised of the possibility of

such dammges.

Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wirrks thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this

Li cense. However, in accepting such obligations, You may act only

66

License

on Your own behal f and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harm ess for any liability
incurred by, or clains asserted against, such Contributor by
reason of your accepting any such warranty or additional

liability.

END OF TERVMS AND CONDI Tl ONS

APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields encl osed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. W al so reconmend that a
file or class nane and description of purpose be included on the
sane "printed page" as the copyright notice for easier

identification within third-party archives.

Copyright [yyyy] [nane of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
implied. See the License for the specific |anguage governing

permi ssions and |imtations under the License.

67

	OpenEngSB Manual
	Table of Contents
	Part I. Introduction
	Chapter 1. How to read the Manual
	Chapter 2. What is the Open Engineering Service Bus
	Chapter 3. When to use the OpenEngSB
	3.1. The OpenEngSB as Base Environment
	3.2. Reusing integration Components and Workflows
	3.3. Management Environment
	3.4. Simple Development and Distribution Management
	3.5. Simple Plug-Ins and Extensions

	Part II. OpenEngSB Framework
	Chapter 4. Quickstart
	4.1. Writing new projects using the OpenEngSB
	4.2. Writing Domains for the OpenEngSB
	4.3. Writing Connectors for the OpenEngSB

	Chapter 5. Architecture of the OpenEngSB
	5.1. OpenEngSB Enterprise Service Bus (ESB)
	5.2. OpenEngSB Infrastructure
	5.3. OpenEngSB Components
	5.4. OpenEngSB Tool Domains
	5.5. Client Tools (Service Consumer)
	5.6. Domain Tools (Service Provider)
	5.7. Domain- and Client Tool Connectors

	Chapter 6. Context Management
	Chapter 7. Persistence in the OpenEngSB
	Chapter 8. Workflows
	8.1. Workflow service
	8.2. Rulemanager
	8.3. Processes

	Chapter 9. Taskbox
	Chapter 10. External Domains and Connectors
	10.1. Proxying
	10.1.1. Proxying internal Connector calls

	10.2. Using JMS proxying
	10.2.1. Proxying internal Connector calls
	10.2.2. Event handling via JMS
	10.2.3. Examples
	10.2.3.1. Connect With Python
	10.2.3.2. Connect With CSharp
	10.2.3.3. Connect With Perl

	Chapter 11. OpenEngSB Platform

	Part III. OpenEngSB Available Domains & Connectors
	Chapter 12. Notification Domain
	12.1. Description
	12.2. Functional Interface
	12.3. Connectors
	12.3.1. Email Connector
	12.3.1.1. External Tool Configuration

	Chapter 13. SCM Domain
	13.1. Description
	13.2. Functional Interface
	13.3. Connectors
	13.3.1. Git Connector
	13.3.1.1. External Tool Configuration

	Chapter 14. Issue Domain
	14.1. Description
	14.2. Functional Interface
	14.3. Connectors
	14.3.1. Trac Connector
	14.3.1.1. External Tool Configuration

	Chapter 15. Report Domain
	15.1. Description
	15.2. Functional Interface
	15.3. Connectors
	15.3.1. Plaintext Report Connector
	15.3.1.1. External Tool Configuration

	Chapter 16. Build Domain
	16.1. Description
	16.2. Functional Interface
	16.3. Connectors

	Chapter 17. Test Domain
	17.1. Description
	17.2. Functional Interface
	17.3. Connectors

	Chapter 18. Deploy Domain
	18.1. Description
	18.2. Functional Interface
	18.3. Connectors

	Chapter 19. Multi-Domain Connectors
	19.1. Connectors
	19.1.1. Maven Connector
	19.1.1.1. External Tool Configuration

	Part IV. OpenEngSB Commiters & Contributors
	Chapter 20. Getting Started as a Developer
	20.1. Getting comfortable with the infrastructure
	20.1.1. Mailing Lists
	20.1.2. Jira Issue Tracker
	20.1.3. Code Repository
	20.1.4. Maven Repository
	20.1.5. Build Server

	20.2. Prerequisites
	20.2.1. Installing Git
	20.2.2. Installing Maven

	20.3. Starting OpenEngSB
	20.4. Using Eclipse
	20.5. Using Other IDEs than Eclipse
	20.6. Git Documentation
	20.6.1. Usage
	20.6.2. Github
	20.6.3. Starting up and configure
	20.6.4. Contributor Workflow
	20.6.5. Commiter Workflow
	20.6.6. Additional Rules

	Chapter 21. How To Create an Internal Connector
	21.1. Prerequisites
	21.2. Creating a new connector project
	21.2.1. Using the Maven Archetype
	21.2.2. Using the gen-connector.sh shell script

	21.3. Project Structure
	21.4. Integrating the Connector into the OpenEngSB environment

	Chapter 22. How To Create an Internal Domain
	22.1. Prerequisites
	22.2. Creating a new domain project
	22.2.1. Using the Maven Archetype
	22.2.2. Using the gen-domain.sh shell script
	22.2.3. Project structure

	22.3. Components
	22.4. Connectors

	Chapter 23. Prepare and use Non-OSGi Artifacts
	23.1. Create Wrapped Artifacts
	23.2. Tips and Tricks

	Chapter 24. Release and Release Process
	24.1. Releases and the OpenEngSB
	24.2. Git Branches
	24.2.1. New Feature Workflow
	24.2.2. Milestone Releases
	24.2.3. Release Candidates
	24.2.4. Final and Support Releases

	24.3. Configure Maven
	24.4. Adapt Jira
	24.5. Perform the release
	24.6. Spread the News
	24.7. Prepare Changelog
	24.7.1. Bug Fixes
	24.7.2. New Projects
	24.7.3. Removed Projects
	24.7.4. Upgraded and New External References
	24.7.5. Remvoed External References
	24.7.6. New Features and Changed Behaviour
	24.7.7. Depricated or Removed Features

	Chapter 25. Admin
	25.1. Infrastructure
	25.1.1. OpenEngSB Infrastructure Server
	25.1.2. OpenEngSB Build
	25.1.3. OpenEngSB Issuetracker
	25.1.4. OpenEngSB git
	25.1.5. OpenEngSB Maven
	25.1.5.1. internal
	25.1.5.2. external

	25.1.6. OpenEngSB Mailinglist

	25.2. Logo Locations and Upgrade
	25.2.1. External Infrastructure
	25.2.2. Internal Management Application
	25.2.3. Documentation

	Part V. Appendix
	Appendix A. Java Coding Style
	A.1. Sun Coding Guidelines
	A.1.1. Line length
	A.1.2. Wrapping
	A.1.3. Number of declarations per line
	A.1.4. Declaration placement
	A.1.5. Blank lines

	A.2. General
	A.2.1. File format
	A.2.2. Header
	A.2.3. Duplication
	A.2.4. Use guards
	A.2.5. Keep methods short
	A.2.6. Use enums
	A.2.7. Avoid use of static members
	A.2.8. Use fully qualified imports
	A.2.9. Never declare implementation types
	A.2.10. SerialVersionUID
	A.2.11. Restrict scope of suppressed warnings
	A.2.12. Use String.format()
	A.2.13. Array declaration style
	A.2.14. Comments

	A.3. Naming
	A.3.1. Interfaces
	A.3.2. Don't abbreviate

	A.4. No clutter
	A.5. Exception Handling
	A.6. Tests
	A.6.1. General
	A.6.2. Naming Scheme

	A.7. XML Formatting
	A.7.1. File Format
	A.7.2. Eclipse Settings
	A.7.3. Recommended Readings

	Appendix B. Writing Code
	B.1. Maven POM files in the OpenEngSB

	Appendix C. Recommended Eclipse Plug-ins for Developers
	C.1. Properties Editor
	C.2. Spring IDE
	C.3. Eclipse CS
	C.4. Drools

	Appendix D. Writing Documentation
	D.1. General Documentation Guidelines
	D.2. Document a domain or connector
	D.2.1. Domain
	D.2.2. Connector

	D.3. Using Docbook
	D.3.1. Tags
	D.3.1.1. Including an image
	D.3.1.2. Using a table
	D.3.1.3. Generating the documentation

	Appendix E. License

