
OpenEngSB Manual
1.0.2.RELEASE "Groovy Goofy"

ii

Table of Contents

I. Introduction .. 1

1. How to read the Manual ... 2

2. What is the Open Engineering Service Bus .. 3

3. When to use the OpenEngSB .. 4

3.1. The OpenEngSB as Base Environment ... 4

3.2. Reusing integration Components and Workflows ... 4

3.3. Management Environment ... 4

3.4. Simple Development and Distribution Management ... 4

3.5. Simple Plug-Ins and Extensions ... 4

II. OpenEngSB Framework .. 5

4. Quickstart .. 6

4.1. Writing new projects using the OpenEngSB .. 6

4.2. Writing Domains for the OpenEngSB ... 6

4.3. Writing Connectors for the OpenEngSB ... 6

5. Architecture of the OpenEngSB .. 7

5.1. OpenEngSB Enterprise Service Bus (ESB) ... 7

5.2. OpenEngSB Infrastructure ... 8

5.3. OpenEngSB Components ... 8

5.4. OpenEngSB Tool Domains .. 8

5.5. Client Tools (Service Consumer) .. 8

5.6. Domain Tools (Service Provider) ... 8

5.7. Domain- and Client Tool Connectors .. 9

6. Context Management .. 10

7. Persistence in the OpenEngSB .. 11

8. Workflows ... 12

8.1. Workflow service .. 12

8.2. Rulemanager ... 12

8.3. Processes ... 12

9. Taskbox ... 13

10. External Domains and Connectors ... 14

10.1. Proxying .. 14

10.2. Using JMS proxying .. 14

11. OpenEngSB Platform .. 16

III. OpenEngSB Available Domains & Connectors .. 17

12. Notification Domain ... 18

12.1. Description .. 18

12.2. Functional Interface ... 18

12.3. Connectors .. 18

13. SCM Domain ... 19

13.1. Description .. 19

13.2. Functional Interface ... 19

13.3. Connectors .. 19

14. Issue Domain ... 20

14.1. Description .. 20

14.2. Functional Interface ... 20

OpenEngSB Manual

iii

14.3. Connectors .. 20

15. Report Domain ... 21

15.1. Description .. 21

15.2. Functional Interface ... 21

15.3. Connectors .. 21

16. Build Domain ... 22

16.1. Description .. 22

16.2. Functional Interface ... 22

16.3. Connectors .. 22

17. Test Domain .. 23

17.1. Description .. 23

17.2. Functional Interface ... 23

17.3. Connectors .. 23

18. Deploy Domain .. 24

18.1. Description .. 24

18.2. Functional Interface ... 24

18.3. Connectors .. 24

19. Multi-Domain Connectors ... 25

19.1. Connectors .. 25

IV. OpenEngSB Commiters & Contributors .. 26

20. Getting Started as a Developer .. 27

20.1. Getting comfortable with the infrastructure .. 27

20.2. Prerequisites .. 28

20.3. Starting OpenEngSB .. 28

20.4. Using Eclipse .. 29

20.5. Using Other IDEs than Eclipse ... 29

20.6. Git Documentation ... 29

21. How To Create an Internal Connector ... 32

21.1. Prerequisites .. 32

21.2. Creating a new connector project .. 32

21.3. Project Structure .. 33

21.4. Integrating the Connector into the OpenEngSB environment 34

22. How To Create an Internal Domain ... 35

22.1. Prerequisites .. 35

22.2. Creating a new domain project ... 35

22.3. Components ... 37

22.4. Connectors .. 38

23. Prepare and use Non-OSGi Artifacts ... 39

23.1. Create Wrapped Artifacts ... 39

23.2. Tips and Tricks ... 40

24. Release and Release Process ... 41

24.1. Releases and the OpenEngSB ... 41

24.2. Git Branches ... 42

24.3. Configure Maven ... 42

24.4. Adapt Jira ... 43

24.5. Perform the release .. 44

24.6. Spread the News .. 44

OpenEngSB Manual

iv

24.7. Prepare Changelog ... 44

25. Admin .. 46

25.1. Infrastructure ... 46

25.2. Logo Locations and Upgrade .. 47

V. Appendix .. 49

A. Java Coding Style ... 50

A.1. Sun Coding Guidelines ... 50

A.2. General .. 50

A.3. Naming .. 53

A.4. No clutter ... 53

A.5. Exception Handling .. 53

A.6. Tests .. 54

A.7. XML Formatting .. 54

B. Writing Code ... 56

B.1. Maven POM files in the OpenEngSB ... 56

C. Recommended Eclipse Plug-ins for Developers ... 58

C.1. Properties Editor ... 58

C.2. Spring IDE ... 58

C.3. Eclipse CS .. 58

C.4. Drools .. 58

D. Writing Documentation .. 59

D.1. General Documentation Guidelines .. 59

D.2. Document a domain or connector .. 59

D.3. Using Docbook ... 60

E. License .. 63

1

Part I. Introduction
This parts provides general information to the project, the document, changelog and similar data which fits neither

in the framework description nor in the contributor section.

The target audience of this part are developers, contributors and managers.

2

Chapter 1. How to read the Manual

Like any open source project we have the problem that writing documentation is a pain and nobody

is paid for doing it. In combination with the rapidly changing OpenEngSB source base this will lead

to a huge mess within shortest time. To avoid this problem we've introduced regular documentation

reviews and, more importantly, the following rules which apply both for writing the document and

for reading it.

• The manual is written as short and precise as possible (less text means lesser to read and even lesser

to review)

• The manual does not describe how to use an interface but only coarse grained concepts in the

OpenEngSB. Since the OpenEngSB is not an end user application, but rather a framework for

developers we expect that Javadoc is no problem for them. Writing Javadoc and keep it up to date

is still hard for developers, but much easier than maintaining an external document. Therefore, all

concepts are explained and linked directly to the very well documented interfaces in the OpenEngSB

on Github. To fully understand and use them you'll have to read this manual parallel to the interface

documentation in the source code.

3

Chapter 2. What is the Open Engineering Service
Bus

In engineering environments a lot of different tools are used. Most of these operate on the same domain,

but often interoperability is the limiting factor. For each new project and team member tool integration

has to be repeated again. In general, this ends up with numerous point-to-point connectors between

tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It

simplifies design and implementation of workflows in an engineering team. The engineering team itself

(or a process administrator) is able to design workflows between different tools. The entire description

process happens on the layer of generic domains instead of specific tool properties. This provides an

out of the box solution which allows typical engineering teams to optimize their processes and make

their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of

individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard all integrated tools and

workflows. This offers new ways in notifying managers at the right moment and furthermore allows

a very general, distanced and objective view on a project.

Although this concept is very powerful it cannot solve every problem. The OpenEngSB is not designed

as a general graphical layer over an Enterprise Service Bus (ESB) which allows you to design ALL of

your processes out of the box. As long as you work in the designed domains of the OpenEngSB you

have a lot of graphical support and other tools available making your work extremely easy. But when

leaving the common engineering domains you also leave the core scope of the service bus. OpenEngSB

still allows you to connect your own integration projects, use services and react on events, but you have

to keep in mind that you're working outside the OpenEngSB and "falling back" to classical Enterprise

Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools

already used for your development process, it will integrate them. Our service bus is used to connect

the different tools and design a workflow between them, but not to replace them with yet another

application. For example, software engineers like us love their tools and will fight desperately if you

try to take them away. We like the wheels as they are, but we do not like the way they are put together

at the moment.

4

Chapter 3. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to

make clear in which situations the OpenEngSB can be useful for you.

3.1. The OpenEngSB as Base Environment

OSGi is a very popular integration environment. Instead of delivering one big product the products get

separated into minor parts and deployed within a general envioronment. The problem with this concept

is to get old, well known concepts up and running in the new environment. In addition tools such as

PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as

Karaf allow a richer and easier development. Neverthless, settting up such a system for development

means a lot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

3.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start

from the ground and develop a complete, own environment, only using existing connectors. Using the

OpenEngSB not only connectors but an entire integrated process, workflow and event environment

waits for you. In addition connectors to different tools can not only be adapted to the specific needs,

but also simply replaced by other connectors, using the Domain concept.

3.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this

environment can be added to your project standalone (similar to e.g. Tomcat management console)

you also have the possibility to completely integrate the OpenEngSB management enviornment into

your Apache Wicket application.

3.4. Simple Development and Distribution Management

While typical ESB have to be installed seperately from your application the OpenEngSB is delivered

with your application. Develop your application in the OpenEngSB environment and scripts to embed

your application into the OpenEngSB are provided. In addition easy blending allows to adapt the

OpenEngSB visually to your needs and cooperate design.

3.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven

archetypes Plug-Ins can be created, uploaded and provided to all other OpenEngSB installations or

applications using the OpenEngSB.

5

Part II. OpenEngSB Framework
This part gives an introduction into the OpenEngSB project and explains its base usage environment and the

concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers

installation, configuration and usage of the administration interface to implement a tool environment according

to your needs.

The target audience of this part are developers and contributors.

6

Chapter 4. Quickstart

As a developer you have basically two ways in which you can use the OpenEngSB. One option is to

use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to

write Plug-Ins (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

4.1. Writing new projects using the OpenEngSB

TBW

4.2. Writing Domains for the OpenEngSB

TBW

4.3. Writing Connectors for the OpenEngSB

TBW

7

Chapter 5. Architecture of the OpenEngSB

This chapter tries to give a short summary of the most important concepts in the OpenEngSB

architecture.

The following graphic shows the architecture of the OpenEngSB. In the center we use a bus

system to integrate different modules. In this case we do not use a classical Enterprise Service

Bus (ESB), but rather the OSGi service infrastructure via Spring-DM (Section 5.1, “OpenEngSB

Enterprise Service Bus (ESB)”). We are using Apache Karaf as the OSGi environment. Karaf is

used in this case, instead of a most basic OSGi environment, such as Apache Felix or Eclipse

Equinox , because it supports us with additional features as extended console support and the feature

definitions. This base infrastructure, including all modifications required for the OpenEngSB is

called the Section 5.2, “OpenEngSB Infrastructure”. Within the OpenEngSB Infrastructure so called

Section 5.3, “OpenEngSB Components” and Section 5.4, “OpenEngSB Tool Domains” are installed.

Both types are written in a JVM compatible language, including OSGi configuration files to run in

the OpenEngSB Infrastructure. They are explained later within this chapter. Different tools running

outside the OpenEngSB Infrastructure are called Section 5.5, “Client Tools (Service Consumer)” or

Section 5.6, “Domain Tools (Service Provider)”, depending on their usage scenario. To integrate and

use them within the OpenEngSB so called Section 5.7, “Domain- and Client Tool Connectors” are

used. All of these concepts are explained within the next sections.

Technical view of the OpenEngSB highlighting the

most important concepts of the integration system

5.1. OpenEngSB Enterprise Service Bus (ESB)

One of the principal concepts for the OpenEngSB development is (if possible) to use already existing

and proven solutions rather than inventing new ones. In this manner the OpenEngSB is an extension

to the ESB concept. Typical ESBs such as Apache Servicemix or other JBI or ESB implementations

always have the feeling to be huge and bloated. Complex integration patterns, messaging, huge

http://karaf.apache.org
http://felix.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://servicemix.apache.org

Architecture of the OpenEngSB

8

configuration files and similar concepts/problems lead to this feeling. And those feelings are right.

They are bloated. The OpenEngsB tries a different approach. Using Karaf as its base framework the

environment is VERY lightweight. Depending on your use case you can use different configurations

and packages out of the box.

5.2. OpenEngSB Infrastructure

While Apache Karaf provides a rich environment and functionality we're not done with it. Via the

Spring-DM extension mechanism, AOP and the OSGi listener model the OpenEngSB directly extends

the environment to provide own commands for the console, fine grained security and a full grown

workflow model. These extensions are optional and not required if you want to use the platform alone.

Add or remove them as required for your use case.

5.3. OpenEngSB Components

These libraries are the OpenEngSB core. The core is responsible to provide the OpenEngSB

infrastructure as well as general services such as persistence, security and workflows. To provide best

integration most of these components are tied to the OpenEngSB ESB environment. Nevertheless, feel

free to add or remove them as required for your use case.

5.4. OpenEngSB Tool Domains

Although each tool provider gives a personal touch to its product their design is driven by a specific

purpose. For example, there are many different issue trackers available, each having its own advantages

and disadvantages, but all of them can create issues, assign and delete them. Tool Domains are based

on this idea and distill the common functionality for such a group of tools into one Tool Domain

interface (and component). Tool domains could be compared best to the concept of abstract classes

in in object orientated programming languages. Similar to these, they can contain code, workflows,

additional logic and data, but they are useless without a concrete implementation. Together with the

ESB, the OpenEngSB infrastructure and the core components the tool domains finally result in the

OpenEngSB.

5.5. Client Tools (Service Consumer)

Client Tools in the OpenEngSB concept are tools which do not provide any services, but consume

services provided by Tool Domains and Core Components instead. A classical example from software

engineering for a client tool is the Integrated Development Environment (IDE). Developer prefer to

have the entire development environment, reaching from the tickets for a project to its build results, at

hand. On the other hand they do not need to provide any services.

5.6. Domain Tools (Service Provider)

Domain Tools (Service Provider) Domain Tools, compared to Client Tools, denote the other extreme

of only providing services. Classically, single purpose server tools, like issue tracker or chat server,

match the category of Domain Tools best. Most tools in (software+) engineering environments fit of

course in both categories, but since there are significant technically differences between them they are

described as two different component types.

Architecture of the OpenEngSB

9

5.7. Domain- and Client Tool Connectors

Tool Connectors connecto tools to the OpenEngSB environment. They implement the respective

Tool Domain interface. As Client Tool Connectors they provide a Client Tool with an access to the

OpenEngSB services. Again, Domain- and Client Tool Connectors are mostly mixed up but separated

because of their technical differences. Additionally it is worth mentioning that tools can be integrated

with more than one connector. This allows one tool to act in many different domains. Apache Maven is

an example for such multi-purpose tools, relevant for build, as well as test and deploy of Java projects.

10

Chapter 6. Context Management

Each project in the OpenEngSB has its own context to store meta information necessary for running

inside of the OpenEngSB. The context basically is represented as a tree structure with key-value pairs

as leafs.

The context in which a workflow is executed, a rule fired or another action happens can be compared

to the project in which the respective action happens. The context store therefore offers the possibility

to perform project specific configurations.

The context service can be used to query the context and to insert, update or delete values. Note that

under a specific name either a node or a leaf can be found, but not both. That means that the context

can be compared to a file system, where context nodes are directories and context leaves files. The

leaves in the context contain string key-value pairs.

The current context service extends the context service and provides additional methods for the

management of the current context of a thread and the creation of new root context entries (which

correspond to projects).

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/context/ContextService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/context/ContextCurrentService.java

11

Chapter 7. Persistence in the OpenEngSB

The OpenEngSB has a central persistence service, which can be used by any component within in

the OpenEngSB to store data. The service is designed for flexibility and usability for the storage of

relatively small amounts of data with no explicit performance requirements. If special persistence

features need to be used it is recommended to use a specialized storage rather than the general storage

mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)

mechanisms. Instances of the persistence service are created per bundle and have to make sure that data

is stored persistently. If bundles need to share data the common persistence service cannot be used, as it

does not support this feature. The persistence manager is responsible for the management of persistence

service instances per bundle. On the first request from a bundle the persistence manager creates a

persistence service. All later requests from a specific bundle should get the exact same instance of the

persistence service.

The persistence solution of the OpenEngSB was designed to support different possible back-end

database systems. So if a project has high performance or security requirements, which can not be

fulfilled with the default database system used by the persistence service, it is possible to implement

a different persistence back-end. To make this exchange easier a test for the expected behavior of the

persistence service is provided.

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceManager.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java

12

Chapter 8. Workflows

The OpenEngSB supports the modeling of workflows. This could be done by two different approaches.

First of all a rule-based event approach, by defining actions based on events (and their content) which

were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy

to replace and extend. For long running business processes the secondary workflow method could be

used which is based on Section 8.3, “Processes” described in Drools-Flow.

The workflow service takes "events" as input and handles them using a rulebased system (JBoss

Drools). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

8.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected

to the environment (domains and connectors). When an event is fired, the workflow-service spawns a

new session of the rulebase. The session gets populated with references to domain-services and other

helper-objects in form of global variables. A drools-session is running in a sandbox. This means that

the supplied globals are the only way of triggering actions outside the rule-session.

8.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the

rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are

saved separately. All elements share a common collection of import- and global-declarations. These

parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or

function to the rulebase, make sure that all imports are present before. Otherwise the adding of the

elements will fail.

8.3. Processes

In addition to processing Events in global/context-specific rules, it is also possible to use them to

control a predefined workflow. The WorkflowService provides methods for starting and controlling

workflow-processes.

When the workflow service receives an event, it is inserted into the rulebase as a new fact (and rules

are fired accordingly). In addition the event is "signaled" to every active workflow-process. Workflow

logic may use specific rules to filter these events.

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/workflow/WorkflowService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/workflow/RuleManager.java

13

Chapter 9. Taskbox

The Taskbox is a service which can be used when human interaction is required, e.g. by help desk

applications. It consists of a core and an UI project. The core is responsible for storing tasks (via

persistence), throwing events and starting workflows. Therefore it provides methods which can be

called by workflows e.g. assigning a task to different user-roles (such as case worker or developer)

or setting a task status.

It is also the job of the core taskbox to choose the right wicket panel from the UI project to display

the right information in a certain situation. A wicket panel contains of a HTML-snippet which can

be embedded into another HTML file, an underlying data model some logic like buttonlisteners and

session handling.

So the idea is that an application which wants to use the taskbox only has to define an area in a wicket

page where the taskbox is to be bound. The taskbox then takes control and takes user input to fill in

the domain object behind which then gets stored again and used to decide how the workflow will go

on. Based on the workflow and user interaction the taskbox then decides which panel is to be shown.

For each main action, the Taskbox throws an event. Examples for that are create, assign, finish or edit

events. These events are used to trigger or resume workflows and they can also be recorded by another

component which then can reconstruct the flow based on them.

The Taskbox service provides the methods to be called by workflows and to bind it to a UI. Take a

closer look to explore its usage and possibilities.

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/core/common/src/main/java/org/openengsb/core/common/taskbox/TaskboxService.java

14

Chapter 10. External Domains and Connectors
Since tools are mostly neither developed for the OpenEngSB nor written in any way that they can

be directly deployed in the OpenEngSB environment a way is required to connect via different

programming languages than Java and from multible protocols. This section covers the examples in

different languages and protocols, how such a thing can be achived.

10.1. Proxying

The proxy mechanism allows for any method call to be intercepted.

10.1.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceManager for every Domain to instantiate a proxy. An

InvocationHandlerFactory has to be provided for proxying any call. The proxy has to be created via

the normal instantiation mechanism on the website.

10.2. Using JMS proxying

The current JMS Connector allows for internal method calls being redirected via JMS, as well as Events

being raised through JMS via an external source.

10.2.1. Proxying internal Connector calls

ProxyConnector automatically exports a ServiceManager for every Domain to instantiate a proxy. The

proxy has to be created via the normal instantiation mechanism on the website. Whenever now a proxy

method is called the call is marshalled and sent via JMS to a queue named <DomainID>_method_send.

The marshalling is done via JSON. The mapping has the parameters type, which can be Call, Exception

or Return, message, which in case of a method call is a simple serialisation of the arguments and name,

which denotes the name of the method.

After sending the method call via JMS the proxy waits for a return at <DomainID>_method_return. The

return message can use the same parameters as the send serialisation (type, name, message), but name

is ignored. The message parameter is serialised to the correct return type if type is set to RETURN. If

the type is Exception a new JMSException is thrown with the message.

By default a JMS Broker is started on port 6000.

10.2.2. Event handling via JMS

For every Domain found at the start of the OPENEngSB Server JMSConnector starts a listener on the

<DomainID>_event_send queue. The parameters used are type and event. The type parameter is the

fully qualified class name that has to be used to deserialise the event and be used as the argument to

raiseEvent. After the correct class is loaded the content of the event parameter gets deserialised into

an instance of the type parameter. The corresponding raiseEvent method is then called for the domain

supported by this EventListener.

When the Event was processed a message is sent to the <DomainID>_event_return queue with the

type set to RETURN and message set to OK. In case of Exception the type is set to exception and the

message is set to the exception message.

External Domains and Connectors

15

10.2.3. Examples

10.2.3.1. Connect With Python

To test the OPENENGSB JMS implementation with Python please follow the instructions

The example can be downloaded here

10.2.3.2. Connect With CSharp

The CSharp connector is written on basis of the Apache ActiveMQ NMS connector and with help of

the Spring NmsTemplate. The code is checked into the repository and could be found in nonjava/

csharp. There an EngSB.sln file. This project file has been developed with SharpDevelop 3, but is

also tested with VisualStudio 2008 CSharp Express Edition with the .Net Framework 3.5.

The example can be downloaded here

10.2.3.3. Connect With Perl

As shown in this example you can connect to the OpenEngSB in a similar way as with Python or

CSharp.

The example can be downloaded here

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/nonjava/python/PythonClient.txt
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.0.2.RELEASE/openengsb-docs-examples-1.0.2.RELEASE-python-connector.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.0.2.RELEASE/openengsb-docs-examples-1.0.2.RELEASE-csharp-connector.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.0.2.RELEASE/openengsb-docs-examples-1.0.2.RELEASE-perl-connector.zip

16

Chapter 11. OpenEngSB Platform

The aim of the OpenEngSB project, as for every open source project, is to make the life of everyone

better. Or at least the life of engineers :). With that said, we want to support projects using the

OpenEngSB as base environment, or providing domains and connectors. While it is easy to find a

source repository and use the OpenEngSB (because of its business friendly Apache 2 license), it

is not that easy to get the visibility your project earns. We want to provide you with this visibility

by including your project into the OpenEngSB product family. Basically we provide you with the

following infrastructure:

• Sub domain within the OpenEngSB: yourproject.openengsb.org

• Upload space for a homepage at yourproject.openengsb.org

• Two mailinglists (yourproject-dev@openengsb.org and yourproject-user@openengsb.org)

• A git repository at github.com/openengsb/yourpoject

• A place at our issue tracker

• A place at our build server

To get your project on the infrastructure you have to use the Apache 2 license for your code and use

the OpenEngSB. It is not required to have any existing source base. Simply send your project proposal

to the openengsb-dev mailing list and we'll discuss your project. Don't be afraid; it's not as hard as

it sounds ;)

17

Part III. OpenEngSB Available
Domains & Connectors

This part gives an overview about the domains and their functionality the OpenEngSB supports out of the box.

Furthermore each connector and necessary external tool configuration is explained.

The target audience of this part are developers and contributors.

18

Chapter 12. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email

notification.

12.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

12.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

12.3. Connectors

12.3.1. Email Connector

The email connector is a simple notification connector based on the java mail API.

12.3.1.1. External Tool Configuration

No external tool configuration is necessary.

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/notification/src/main/java/org/openengsb/domain/notification/NotificationDomain.java

19

Chapter 13. SCM Domain

The source code management (SCM) domain is the tool domain for all SCM tools, like Git or

Subversion.

13.1. Description

The SCM Domain polls external repositories for changes of content under source control and provides

functionality to copy/export the repository content for further processing.

13.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

13.3. Connectors

13.3.1. Git Connector

The Git Connector is a SCM tool connector for the Git fast version control system.

13.3.1.1. External Tool Configuration

The external Git repository must be anonymously accessible with one of the following protocols:

1. git

2. http

3. ftp

No further configuration is needed.

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/scm/src/main/java/org/openengsb/domain/scm/ScmDomain.java
http://git-scm.com/

20

Chapter 14. Issue Domain

The issue domain is the tool domain for all issue tracking tools, like Jira, Trac or Mantis.

14.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

14.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

14.3. Connectors

14.3.1. Trac Connector

The Trac Connector is a issue tool connector for the Trac project management and issue tracker system.

14.3.1.1. External Tool Configuration

The external Trac tool has to be accessible via XmlRpc. For this purpose the XmlRpcPlugin has to be

installed (see http://trac.edgewall.org/wiki/PluginList).

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/issue/src/main/java/org/openengsb/domain/issue/IssueDomain.java
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/PluginList

21

Chapter 15. Report Domain

The report domain is the tool domain for report generation and management tools.

15.1. Description

The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports

and a category system for report storage.

15.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

15.3. Connectors

15.3.1. Plaintext Report Connector

The plain text report tool connector is simple implementation of the report domain, which generates

plain text reports.

15.3.1.1. External Tool Configuration

No external configuration is needed.

https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/report/src/main/java/org/openengsb/domain/report/ReportDomain.java

22

Chapter 16. Build Domain

The build domain is a domain for all build tools, like Maven or Ant.

16.1. Description

The build domain builds a specific pre-configured project or suite of projects.

16.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

16.3. Connectors
This domain is implemented by the Section 19.1.1, “Maven Connector”, which supports multiple

domains.

http://maven.apache.org/
http://ant.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/build/src/main/java/org/openengsb/domain/build/BuildDomain.java

23

Chapter 17. Test Domain

The test domain is a domain for all test tools, like Maven.

17.1. Description

The test domain runs all tests for a specific pre-configured project or suite of projects.

17.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

17.3. Connectors
This domain is implemented by the Section 19.1.1, “Maven Connector”, which supports multiple

domains.

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/test/src/main/java/org/openengsb/domain/test/TestDomain.java

24

Chapter 18. Deploy Domain

The deploy domain is a domain for all deploy tools, like Maven.

18.1. Description

The deploy domain deploys a specific pre-configured project or suite of projects.

18.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

18.3. Connectors
This domain is implemented by the Section 19.1.1, “Maven Connector”, which supports multiple

domains.

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/domain/deploy/src/main/java/org/openengsb/domain/deploy/DeployDomain.java

25

Chapter 19. Multi-Domain Connectors

Some connectors support multiple domains. Therefore they cannot be categorized into a specific

domain.

19.1. Connectors

19.1.1. Maven Connector

The Maven Connector is a build, test and deploy tool connector for Maven.

19.1.1.1. External Tool Configuration

The Maven executable has to be on the system path to make this connector work.

http://maven.apache.org/

26

Part IV. OpenEngSB
Commiters & Contributors

This part explains how to develop additional domains, connectors and similar parts. In addition it explains the

rules and infrastructure according to which the project is developed.

The target audience of this part are contributors.

27

Chapter 20. Getting Started as a Developer

This chapter describes the basic steps to get started as a developer for the OpenEngSB project.

20.1. Getting comfortable with the infrastructure

As any open source project the OpenEngSB development depends on a wide range of different

infrastructural and communication methods to get things done. The following sub-chapters describe

the different tools, their location and usage in the OpenEngSB development process.

20.1.1. Mailing Lists

The most important communication medium for the OpenEngSB development team is email. Mostly

all of the vital design, architectural and infrastructural decisions are discussed on the OpenEngSB

developer list. Therefore, the first step to get involved into the development of the OpenEngSB is to

register to the Google Groups OpenEngSB Developer Mailing List and say hello world.

While notifications from the Hudson Build Server, about code commits and Jira issues are vital

for the OpenEngSB core developer, they may not be as interesting for you. If you get annoyed

by the automatically generated notification mails ignore all mails from openengsb@gmail.com

and noreply@github.com to openengsb-dev@googlegroups.com. Please remember it is important to

configure both, to and from in your filter. Both addresses will also send notifications directly to you

which are important and should not be ignored!

20.1.2. Jira Issue Tracker

All issues are stored within a Jira instance reachable at issues.openengsb.org. Please use the issue

tracker to keep track of all bugs, ideas and new features you're currently working or of which you think

they might be interesting.

20.1.3. Code Repository

As for any open source project the source code is public available. We've chosen Github for this task.

The project is available at github.com/openengsb/openengsb.

As explained later within this document Github is not only used to store our code, but also for

collaboration, code review and patch-tracking.

20.1.4. Maven Repository

The OpenEngSB is available at Maven Central. We still have our own Maven repository at

maven.openengsb.org/ and snapshots are available via the sonatype Maven repository at http://

oss.sonatype.org.

20.1.5. Build Server

The master and integration branch of the OpenEngSB repository are watched and built by a Hudson

build server instance available at build.openengsb.org. Notifications about failures are directly sent to

the OpenEngSB developer list.

http://groups.google.com/group/openengsb-dev
http://issues.openengsb.org/jira/browse/OPENENGSB
http://github.com
http://github.com/openengsb/openengsb
http://repo1.maven.org/maven2/org/openengsb/
http://maven.openengsb.org/
http://oss.sonatype.org
http://oss.sonatype.org
http://build.openengsb.org/hudson/

Getting Started as a Developer

28

20.2. Prerequisites

First of all the latest JDK has to be installed on the system and the JAVA_HOME variable has to be set

accordingly. All further steps are described in the subsections of this chapter.

20.2.1. Installing Git

It is assumed that Git is installed. For Linux your distribution provides already a package for git. Please

use the package manager of your distribution (apt, yum, pacman, ...) to install it. For MAC binaries are

available at git-scm.com. For MS users cygwin or msysgit. After installing, set at least the following

variables:

 git config --global user.name "Firstname Lastname"

 git config --global user.email user@example.com

 git config --global core.autcrlf input

20.2.2. Installing Maven

Finally download Apache Maven3 and unpack it. Add the path of the maven binary to your PATH

variable. Furthermore you should set the MAVEN_OPTS environment variable to allow Maven to use

more RAM. If you don't you'll get Out Of Memory errors.

 export PATH=$PATH:/path/to/maven/bin

 export MAVEN_OPTS='-Xmx1024M -XX:MaxPermSize=512m'

Add these commands to ~/.bashrc to make the settings permanent.

20.3. Starting OpenEngSB

The next step is to get the OpenEngSB source by checking out the current master using git:

 git clone git://github.com/openengsb/openengsb.git

Now start the OpenEngSB by executing

 mvn clean install pax:provision

This command builds, tests and runs the OpenEngSB right from your command-line. Executing the

following command will shutdown it again:

git-scm.com
www.cygwin.com
code.google.com/p/msysgit

Getting Started as a Developer

29

 shutdown

20.4. Using Eclipse

Eclipse had been chosen by the OpenEngSB team as the main development environment. After

checkout the code the following command creates the required Eclipse project files:

 mvn install

 mvn eclipse:eclipse

Start Eclipse and select any workspace. The folder eclipse-workspace is ignored in the OpenEngSB

project structure for this purpose. But you can choose any other directory if you prefer. At the

preference page go to Java/Build Path/Classpath Variables and create a new M2_REPO pointing to

~/.m2/repository. Now use File, Import..., Existing Projects into Workspace. As the root directory

select the root of the OpenEngSB source. Eclipse will list several projects and for now it's best to

import them all by clicking Finish.

At openengsb/etc/eclipse/ eclipse configuration files for formatting and Checkstyle can be found.

These files should be used.

20.5. Using Other IDEs than Eclipse

Basically, the OpenEngSB is developed in plain Java, which means any other IDE than Eclipse can be

used too. While there are tools for most IDEs to use Checkstyle, but non of it supports the formatting

file of the OpenEngSB. Please use Checkstyle, which automatically validates the eclipse formatting

rules too.

20.6. Git Documentation

20.6.1. Usage

First of all this chapter explains only the very basics of Git and only that parts directly relevant for the

development of the OpenEngSB project, but not the entire idea and possibilities of Git. Please read

some tutorials first to get how to work with Git and see this chapter more as an summary! You may

also take a look at the Git Documentation Page and the Pro Git Book.

20.6.2. Github

OpenEngSB is developed at github.com. Please create an account there and explore its features. Specify

your real name in the admin tab and add a picture. This makes it easier to associate your commits to you.

http://git-scm.com/documentation/
http://progit.org/book/
http://github.com/

Getting Started as a Developer

30

20.6.3. Starting up and configure

Before starting to work with Git some settings should be applied to Git. Therefore simply execute the

following commands.

git config --global user.name "Firstname Lastname"

git config --global user.email user@example.com

git config --global color.ui "auto"

git config --global pack.threads "0"

git config --global diff.renamelimit "0"

git config --global core.autocrlf "input"

Additionally execute the special settings for github as could be found on github in the "Account

Settings" tab is a point "Global git config information". Please use the two git commands described

there

git config --global github.user username

git config --global github.token token

If you don't already have an SSH key you can create one by executing ssh-keygen Simply answer all

questions from the application with "enter" without enter any values. Afterwards the content of the

id_rsa.pub file from your ~/.ssh/ directory should be submitted to github (Account Settings/SSH

public keys).

20.6.4. Contributor Workflow

Contributor are all developer who like to contribute to the OpenEngSB project, but not have commit

rights to openengsb/openengsb.

Please keep in mind, that this manual is NOT a Git tutorial. Github itself, e.g. provides a great help at

help.github.com. All base concepts such as forking, pull-requests, ...

Please start by choose or create a new issue. Now create a new fork of the OpenEngSB at Github

(if you've not done already so; otherwise this is explained here). Clone your fork, but also add

the original openengsb repository as remote repository. This is also explained here. In difference

to the Github tutorial please do not commit to the master, but rather create a new branch named

OPENENGSB-ISSUE_NUMBER_YOURE_WORKING_ON. Optionally append /DESCRIPTION

(e.g. OPENENGSB-586/mvn-eclipse-download-fix).

git checkout -b OPENENGSB-ISSUE origin/BRANCH

BRANCH is the point where you like to start your work. If you like to contribute to the head this will be

typically integration, but could also be a commit or a complete different branch. This is the OpenEngSB

schema for naming branches and we'll really appreciate if you work according to it.

Now hack, commit and push as you like. If you think you're finished execute the etc/scripts/pre-

push.sh script validating your code, tests, licenses and so on. If everything works without errors create

a Github pull request on Github, between the master or integration branch (depending on where you've

http://book.git-scm.com/
http://help.github.com/forking/
http://help.github.com/forking/

Getting Started as a Developer

31

created your branch on) and your branch. This process is also explained at help.github.com (here). In

addition it will help if you add the link to the pull request to the issue you're working on. A commiter

will tend as fast as possible to your request and give feedback or directly merge your commit into the

integration/master branch.

20.6.5. Commiter Workflow

The only difference between a commiter and a contributor is that he has to watch and merge branches

of contributors. If a commiter is happy with the work of a contributor. Comments and other discussions

should be done on the mailing list and/or via the Github review system and pull requests.

In addition commiters typically do not create forks but rather create their branches directly in the

OpenEngSB repository. This is done because the repository is covered by the OpenEngSB build server

and in addition keeps everything closer together.

20.6.6. Additional Rules

1. (Contributor/Committer) All development is done in branches (also of the core developers) One

exception to this rule exists: Small fixes and maintenance work which is NOT related to a new

feature and does not exceed 2 commits should be cherry-picked into the master directly.

2. (Contributor/Committer) Rebase is not dead (although we use merges). Never ever commit local

merges. You still should develop in local dev branches and rebasing them with the upstream

branches. Only if nobody else has access to your fork you can be sure that nobody changed it!

3. (Committer) If merging branches from forked repositories ALWAYS use the --no-ff option for

merges; this will always create a merge node (even if a fast-forward merge is possible). This is

required to create a clear and consistent history!

4. Avoid backward merges from the master and keep feature branches small! This does not mean that

backward merges from master are forbidden. But they should not be done too often, since they

create a history not easy to read. Please use the method described on this page (with --no-ff --

no-commit) to reduce the number of merge nodes.

5. Use meaningful feature branch names. Using the merge history in the master you can easily follow

the development of features. But this requires (maybe long) good names! In addition, always start

with OPENENGSB-NUMBER of the issue you're working on. Try to always do work based on

issues. If no issue covers what you're doing create one.

http://help.github.com/pull-requests/

32

Chapter 21. How To Create an Internal Connector
This chapter describes how to implement a connector for the OpenEngSB environment. A connector

is an adapter between an external tool and the OpenEngSB environment. Every connector belongs to

a domain which defines the common interface of all its connectors. This means that the connector is

responsible to translate all calls to the common interface to the externally provided tool.

21.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector

then Section 5.4, “OpenEngSB Tool Domains” is a good starting point. If there's already a matching

domain for this tool it is strongly recommended to use it. But if this tool requires a new domain it has

to be created. This is also described in Chapter 22, How To Create an Internal Domain.

21.2. Creating a new connector project

To take the burden of the developer creating the initial boilerplate code and configuration, a Maven

archetype is provided for creating the initial project structure. Furthermore, if the new connector is

developed inside of the OpenEngSB repository, a shell script can be found at etc/scripts/gen-

connector.sh for further help in creating a new connector project.

21.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the gen-connector.sh script

executes additional tasks, like the renaming of the resulting project. Furthermore the shell script tries

to make sure that the new project is consistent with the naming conventions of the OpenEngSB project.

The following parameters have to be specified to execute the correct archetype:

• archetypeGroupId - the groupId of the OpenEngSB connector archetype.

• archetypeArtifactId - the artifactId of the OpenEngSB connector archetype.

• archetypeVersion - the current version of the OpenEngSB connector archetype.

The following parameters have to be defined for the parent of the new connector, which is not only

parent of the connector, but also for the implementation of the domain and all other connectors of

this domain.

• parentArtifactId - the artifactId of the project parent.

The following parameters have to be defined for the domain of the new connector.

• groupId - the groupId of the domain.

• domainArtifactId - the artifactId of the domain.

The following parameters have to be defined for the connector.

• artifactId - the connector artifact id. Has to be "openengsb-domains-<yourDomain>-

<yourConnector>".

How To Create an Internal Connector

33

• version - the package for the source code of the domain implementation. Has to be

"org.openengsb.domains.<yourDomain>".

• domainInterface - The name of the domain interface.

• parentPackage - The package in which the domain interface can be found.

• package - the package for the connector code. Usually <parentPackage>.<yourConnector> is used.

• name - the name of the implementation module. Has to be "OpenEngSB :: Domains ::

<yourDomain> :: <yourConnector>"

Where <yourDomain> has to be replaced by your domain name and <yourConnector> has to be

replaced by the respective connector name.

Note that the archetype will use the artifactId to name the project, but the OpenEngSB convention is

to use the connector name. Therefore you will have to rename the resulting project. Do not forget to

check that the new connector is included in the modules section of the domain parent pom.

21.2.2. Using the gen-connector.sh shell script

Calling the script should be done from the domain-specific directory. I.e. if your are developing a

new connector for the Notification-Domain your current directory should be domains/notification.

Inside your favourite shell execute the script.

notification $../../etc/scripts/gen-connector.sh

The script tries to guess as much as possible from your current location and previous input. Guessed

values are displayed in brackets. If the guess is what you want, simply acknowledge with Return. The

following output has been recorded by executing the script in the domains/notification directory:

Domain Name (is notification): <Enter>

Domain Interface (is NotificationDomain): <Enter>

Connector Name: twitter <Enter>

Version (is 1.0.0-SNAPSHOT): <Enter>

Project Name (is OpenEngSB :: Domains :: Notification :: Twitter): <Enter>

Only the connector name was set, everything else has been guessed correctly by the script. After this

inputs the Maven Archetype gets called and may ask you for further inputs. You can simply hit Return

each time, because the values have been already set by the script. If the script finishes successfully the

new connector project has been created and you may start implementing.

21.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

-- pom.xml

-- src

 -- main

 -- java

 | -- org

How To Create an Internal Connector

34

 | -- openengsb

 | -- domains

 | -- notification

 | -- twitter

 | -- internal

 | | -- MyServiceImpl.java

 | | -- MyServiceInstanceFactory.java

 | -- MyServiceManager.java

 -- resources

 -- META-INF

 | -- spring

 | -- connector-context.xml

 -- OSGI-INF

 -- l10n

 -- bundle_de.properties

 -- bundle.properties

The MyServiceImpl class implements the interface of the domain and thus is the communication

link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run

the end user) enough information on how to configure a connector, the MyServiceInstanceFactory

class provides the OpenEngSB with meta information for configuring and functionality for creating

and updating a connector instances. The MyServiceManager class connects connector instances

with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as OSGi

services and adds necessary meta information to each instance. Since the basic functionality is

mostly similar for all service managers, the MyServiceManager class extends a common base class

AbstractServiceManager. In addition the AbstractServiceManager also persists the configuration

of each connector, so that the connector instances can be restored after a system restart.

The spring setup in the resources folder contains the setup of the service manager. Here additional

bean setup and dependency injection can be configured.

The OpenEngSB has been built with localization in mind. The Maven Archetype already generates

two bundle*.properties files, one for English (bundle.properties) and one for the German

(bundle_de.properties) language. Each connector has to provide localization through the properties

files for service and attributes text values. This includes localization for names, descriptions, attribute

validators, option values and more. For convenience the BundleStrings class is provided on all method

calls where text is needed for user representation for a specific locale.

21.4. Integrating the Connector into the OpenEngSB
environment

The service manager is responsible for the integration of the connector into the OpenEngSB

infrastructure. The correct definition of this service is critical.

35

Chapter 22. How To Create an Internal Domain

This chapter describes how to implement a domain for the OpenEngSB environment. A domain

provides a common interface and common events and thereby defines how to interact with connectors

for this domain. For a better description of what a domain exactly consists of, take a look at the

architecture guide Chapter 5, Architecture of the OpenEngSB.

22.1. Prerequisites

In case it isn't known what a domain is and how it defines the interface and events for connectors, then

Section 5.4, “OpenEngSB Tool Domains” is a good starting point.

22.2. Creating a new domain project

To get developers started creating a new domain a Maven archetype is provided for creating the initial

project structure. Furthermore, if the new domain is developed in the OpenEngSB repository, a shell

script can be found at etc/scripts/gen-domain.sh as further convenience.

22.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the gen-domain.sh script executes

additional tasks, like the renaming of the resulting project. Furthermore the shell script tries to make

sure that the new project is consistent with the naming conventions of the OpenEngSB project.

The following parameters have to be specified to execute the correct archetype:

• archetypeGroupId - the groupId of the OpenEngSB domain archetype.

• archetypeArtifactId - the artifactId of the OpenEngSB domain archetype.

• archetypeVersion - the current version of the OpenEngSB domain archetype.

The following parameters have to be defined for the parent of the new domain, which is not only parent

of the domain implementation, but also for all connectors of this domain.

• groupId - the groupId of the project parent. Has to be "org.openengsb.domains.<yourDomain>".

• artifactId - the artifactId of the project parent. Has to be "openengsb-domains-<yourDomain>-

parent".

• version - the version of the domain parent, which is usually equal to the current archetype version.

• name - the name of the parent module. Has to be "OpenEngSB :: Domains :: <yourDomain> ::

Parent"

The following parameters have to be defined for the implementation of the new domain.

• implementationArtifactId - the implementation artifact id. Has to be "openengsb-domains-

<yourDomain>-implementation".

How To Create an Internal Domain

36

• package - the package for the source code of the domain implementation. Has to be

"org.openengsb.domains.<yourDomain>".

• implementationName - the name of the implementation module. Has to be "OpenEngSB ::

Domains :: <yourDomain> :: Implementation"

Where <yourDomain> has to be replaced by your domain name, which is usually written in lower

case, like e.g. report for the report domain.

Note that the archetype will use the artifactId to name the project, but the OpenEngSB convention is to

use the domain name. Therefore you will have to rename the resulting project. Do not forget to check

that the new domain is included in the modules section of the domains pom.

22.2.2. Using the gen-domain.sh shell script

The script should be executed from the domains directory in your OpenEngSB repository.

domains $../etc/scripts/gen-domain.sh

You'll be asked to fill i a few variables the script needs to create the initial project structure. Based

on your input, the script tries to gues further values. Guessed values are displayed in brackets. If the

guess is correct, simply acknowledge with Return. As example, the following output has been recorded

while creating the Test domain:

Domain Name (is mydomain): test <Enter>

Version (is 1.0.0-SNAPSHOT): <Enter>

Prefix for project names (is OpenEngSB :: Domains :: Test): <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed by the script. After

giving the inputs, the Maven archetype gets executed and may ask for further inputs. You can simply

hit Return, as the values have been already correctly set by the script. If the script finishes successfully

two new Maven projects, the domain parent and domain implementation project, have been created

and setup with a sample implementation for a domain.

22.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

-- implementation

| -- pom.xml

| -- src

| -- main

| | -- java

| | -- org

| | -- openengsb

| | -- domains

| | -- mydomain

| | -- MyDomain.java

| | -- MyDomainEvents.java

| | -- MyDomainProvider.java

| -- resources

| -- META-INF

| | -- spring

| | -- mydomain-context.xml

How To Create an Internal Domain

37

| -- OSGI-INF

| -- l10n

| -- bundle_de.properties

| -- bundle.properties

-- pom.xml

The project contains besides simple stubs for the domain interface, the domain events interface and

the domain provider also a resources folder, which contains the spring setup and property files for

internationalization.

Although the generated domain does in effect nothing, you can already start the OpenEngSB for testing

with mvn clean install pax:provision and the domain will be automatically be picked up and

started.

The spring setup in the resources folder already contains the necessary setup for this domain to work

in the OpenEngSB environment. Furthermore the default implementation proxies for the domain

interface, which forwards all service calls to the default connector for the domain and the default

implementation of the domain event interface, which forwards all events to the workflow service of

the OpenEngSB are configured.

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. E.g.

the Maven Archetype already creates to bundle*.properties files, one for English (bundle.properties)

and one for the German (bundle_de.properties) language. Each connector has to provide localization

through the properties files. For domains, this only means localization for a name and description of

the domain itself.

22.3. Components

1. Domain interface - This is the interface that connectors of that domain must implement. Operations

that connectors should provide, are specified here. Events that are raised by this Domain in

unexpected fashion (e.g new commit in scm system) are specified on the Interface. The Raise

Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation

is put on a method the events that are specified through the annotation are raised in sequence upon

a call.

2. Domain event interface - This is the interface that the domain provides for its connectors to send

events into the OpenEngSB. The event interface contains a raiseEvent(SomeEvent event) method

for each supported event type.

3. Domain Provider - The domain provider is a service that provides information about the domain

itself. It is used to determine which domains are currently registered in the environment. There is

an abstract class, that takes over most of the setup.

4. Spring context - There are three services, that must be registered with the OSGi service-

environment. First there is the domainprovider of course. Moreover the domain must provide a

kind of connector itself, since it must be able to handle service calls and redirect it to the default-

connector specified in the current context. And finally the domain provides an event interface

for its connectors, which can be used by them to send events into the OpenEngSB. The default

implementation of this event interface simply forwards all events sent through the domain to the

workflow service. But domains can also provide their own implementation of their event interface

How To Create an Internal Domain

38

and add data to events or perform other tasks. There is a beanfactory that creates a Java-Proxy that

can be used as ForwardService both for the forwarding of service calls from domain to connector

and for the forwarding of events to the workflow service. The service call ForwardService looks

up the default-connector for the specified domain in the current context and forwards the method-

call right to it. The event forward service simply forwards all events to the workflow service of

the OpenEngSB.

22.4. Connectors

For information regarding the implementation of connectors for the newly created domain see

Chapter 21, How To Create an Internal Connector.

39

Chapter 23. Prepare and use Non-OSGi Artifacts

Basically, wrapped JARs do not differ in any way from basic jars, besides that they are deployable in

OSGi environments. They are used as regular jar files in the OpenEngSB. Nevertheless, the wrapping

itself is not as painless. This chapter tries to explain the process in detail.

23.1. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1. In case that no osginized library is available in the public repositories a package has to be created.

Because of the simplicity of the process it should be done by hand. First of all create a folder with

the name of the project you like to wrap within openengsb/wrapped. Typically the groupId of the

bundle to wrap is sufficient. For example, for a project wrapping all Wicket bundles the folder

org.apache.wicket is created.

2. As a next step add the newly created folder as a module to the openengsb/wrapped/pom.xml file

in the module section. For the formerly created Wicket project org.apache.wicket should be added

to the module section.

3. Now create a pom.xml file and a osgi.bnd file in the newly created project folder.

4. The pom.xml contains the basic project information. As parent for the project the wrapped/pom.xml

should be used. Basically for every wrapped jar the project has the following structure:

<?xml version="1.0" encoding="UTF-8"?>

<!--

OPENENGSB LICENSE

-->

<project>

 <parent>

 <groupId>org.openengsb.wrapped</groupId>

 <artifactId>openengsb-wrapped</artifactId>

 <version>1</version>

 </parent>

 <properties>

 <bundle.symbolicName>wrapped_jar_group_id</bundle.symbolicName>

 <wrapped.groupId>wrapped_jar_group_id</wrapped.groupId>

 <wrapped.artifactId>wrapped_jar_artifact_id</wrapped.artifactId>

 <wrapped.version>wrapped_jar_version</wrapped.version>

 <bundle.namespace>${wrapped.groupId}</bundle.namespace>

 </properties>

 <modelVersion>4.0.0</modelVersion>

 <groupId>${wrapped.groupId}</groupId>

 <artifactId>org.openengsb.docs.${wrapped.groupId}</artifactId>

 <version>${wrapped.version}</version>

 <name>${bundle.symbolicName}</name>

 <packaging>bundle</packaging>

 <dependencies>

 <all_jars_which_should_be_embedded />

 </dependencies>

Prepare and use Non-OSGi Artifacts

40

</project>

5. The osgi.bnd file contains the OSGi specific statements for the maven-bundle-plugin. While the

default export and import are already handled in the root pom project specific settings have to be

configured here. For example all packages within the bundle-namespace are always exported. This

is for most scenarios sufficient. In addition all dependencies found are automatically imported as

required. This is generally not desired. Instead the parts of the library which have to be imported

should be defined separately. The following listing gives a short example how such a osgi.bnl file

can look like. For a full list of possible commands see the maven-bundle-plugin documentation.

#

OPENENGSB LICENSE

#

Embed-Dependency: *;scope=compile|runtime;type=!pom;inline=true

Import-Package: sun.misc;resolution:=optional,\

javax.servlet;version="[2.5.0, 3.0.0)",\

*;resolution:=optional

23.2. Tips and Tricks

Although the description above sounds quite simple (and wrapping bundles is simple mostly) still

some nasty problems can occur. This section summarizes good tips and ideas how to wrap bundles

within the OpenEngSB.

• The best workflow to wrap a bundle is according to our experiences, to execute the previously

described steps and simply start the OpenEngSB (pax:provision). Either it works or creates a huge

stack of exceptions with missing import statements. Simply try to fulfill one problem, than start

again till all references are resolved.

• Embedding artifacts is nothing bad. Although it is recommended to use all references artifacts of a

bundle directly as OSGi components it can be such a pain sometimes. Some references are simply

not required by any other bundle or are too hard to port. In such cases feel free to directly embed

the dependencies in the wrapped jar.

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

41

Chapter 24. Release and Release Process

This section provides a step by step description to execute a release of the OpenEngSB. It is relevant

for everyone marked in the OpenEngSB Team List as release manager because only they have the

required rights to execute the following steps.

24.1. Releases and the OpenEngSB

Every release of the OpenEngSB consists of the following parts: RELEASE.MAJOR.MINOR.TYPE.

Every release of this type is available at Maven Central. Optionally SNAPSHOT is appended. Snapshot

releases are available from the Sonatype Snapshot repository. This section explains what each modifier

means and how it is used within the OpenEngSB.

SNAPSHOTS: Snapshots are always available from the latest build of the OpenEngSB. They are taken

from the master branch automatically at each commit.

TYPE: Type could be MX, RCX or RELEASE, where X is a number. While RELEASE marks a

final release, ready for use in your production environment, M and RC are typically not ready for

production. M stands for Milestone release and is cut every two weeks to present the current state of the

OpenEngSB and allow a coarse grained planning and roadmap for the OpenEngSB team. RC, release

candidates, are handled differently. After everything is finished and the OpenEngSB teams think that

the current work is ready for a release, we provide a release candidate and invite everyone to test the

release. If there are any issues with the release we fix them and provide another release candidate.

During this process no new features, but only bug fixes are handled. We continue this process as long

as there are no new bug reports for a RC for two weeks. Then we re-release the latest release candidate

as final release. This process only applies for RELEASE and MAJOR. MINOR is handled differently,

as explained later on.

RELEASE is a increasing number used for mayor changes within the OpenEngSB architecture. In

addition all methods and interfaces marked as deprecated are removed during such a release. It is also

possible that a RELEASE does not enhance any mayor architectural concept but is only used to get rid

of all the deprecated methods, generated during MAJOR releases.

MAJOR is the main feature development number of the OpenEngSB. Each release containing new

features will be a MAJOR release. Nevertheless, between MAJOR releases architectural concepts are

not removed but only set to deprecated. This means they only enhance functionality but try to not

break with former releases.

MINOR releases are bug-fix releases. They do not include any new features but only fix bugs within

the OpenEngSB. They have no release plan, but are simply cut after each bug-fix.

To visualize the explained process the following example. Assume we have released

openengsb-1.0.0.RELEASE. Now we're working on openengsb-1.1.0.RELEASE. Therefore we start

developing openengsb-1.1.0.M1 which will be released in two weeks. During the development of

1.1.0.M1 a bug occurs at openengsb-1.0.0.RELEASE. During the development the bug is fixed and

openengsb-1.0.1.RELEASE is released. After 1.1.0.M1 we require three additional milestone releases

to get feature releases. Six weeks after 1.1.0.M1 we'll release 1.1.0.RC1. From now on we continue

to develop 1.2.0.M1 (or 2.0.0.M1, depending on the gravity of the changes) and wait for feedback on

http://openengsb.org/team-list.html
http://repo1.maven.org/maven2/
https://oss.sonatype.org/content/groups/public/

Release and Release Process

42

1.1.0.RC1. Now a bug-report occurs for 1.0.1.RELEASE. We fix the bug, release 1.0.2.RELEASE

with the fix. If it also affects 1.1.0.RC1, we fix the bug there too and release 1.1.0.RC2 (still working

on 1.2.0.M1(!)). Now assume that some other bug reports are received for 1.0.0.RC2. We fix them and

release 1.1.0.RC3. In the meantime we finished 1.2.0.M1 and start work on 1.2.0.M2. Now two weeks

after the release of 1.1.0.RC3 without any new bug-reports we re-release 1.1.0.RC3 to 1.1.0.RELEASE

(starting the game again from the beginning).

24.2. Git Branches

For the best cooperation between Git and Maven the OpenEngSB team has developed its own workflow

with branches during releases. For different project phases (milestone, RC, final, support) different

workflows apply.

24.2.1. New Feature Workflow

For new features the already described workflow apply. This means create a feature branch based on

the integration branch, add your commits and create a pull request if you're finished. Your changes

will be merged (after review) to the integration branch. From time to time the integration branch ins

merged into the master, which is pushed as snapshots to sonatype.

24.2.2. Milestone Releases

For milestone releases about one day before a planned release a openensb-1.X.0-release branch is

created. This branch can be forward merged to integration as often as liked (no backward merges are

allowed). If all final bugs and changes are done the MX version is released on this branch and the

branch is merged into integration and deleted again. During this process any number of new features

are merged into integration, without affecting the release any longer.

24.2.3. Release Candidates

RCs are the pre-level for final releases. This means, after the openengsb team decides a release is

ready to go, two new branch are created from the latest commit AFTER the milestone release (where

the mvn versions are set back to the snapshot version): openengsb-1.X.x-dev and openengsb-1.X.x-

release. openengsb-1.X.x-dev is used for bug-fixes. Every fix which should also be merged into

the integration branch/master should be branched off openengsb-1.X.x-dev and afterewards merged

into integration and openengsb-1.X.x-dev. If a release is ready openengsb-1.X.x-dev is merged into

openengsb-1.X.x-release, where the release takes place. BUT no merge from openengsb-1.X.x-release

to openengsb-1.X.x-release is allowed!

24.2.4. Final and Support Releases

All support and final releases are handled exactly as the RC releases between the openengsb-1.X.x-

dev and openengsb-1.X.x-release branch.

24.3. Configure Maven

For the right rights to deploy to maven central and upload maven site to openengsb.org the following

entries are required in your ~/.m2/settings.xml file:

Release and Release Process

43

<settings>

 <server>

 <id>sonatype-nexus-snapshots</id>

 <username>SONATYPE_USERNAME</username>

 <password>SONATYPE_PASSWORD</password>

 </server>

 <server>

 <id>sonatype-nexus-staging</id>

 <username>SONATYPE_USERNAME</username>

 <password>SONATYPE_PASSWORD</password>

 </server>

 <server>

 <id>OpenengsbWebServer</id>

 <username>OPENENGSB_SERVER_USERNAME</username>

 <password>OPENEGNSB_SERVER_PASSWORD</password>

 </server>

 <profiles>

 <profile>

 <id>milestone</id>

 <properties>

 <gpg.passphrase>GPG_PASSPHRASE</gpg.passphrase>

 </properties>

 </profile>

 <profile>

 <id>release</id>

 <properties>

 <gpg.passphrase>GPG_PASSPHRASE</gpg.passphrase>

 </properties>

 </profile>

 <profile>

 <id>final</id>

 <properties>

 <gpg.passphrase>GPG_PASSPHRASE</gpg.passphrase>

 </properties>

 </profile>

 </profiles>

<settings>

All the usernames and passwords can be retrieved from someone marked as administrator in the

OpenEngSB Team List.

In addition you have to have a GPG key for your mail address (the same you're using to commit to the

OpenEngSB source repository which is uploaded to the MIT Key Server.

24.4. Adapt Jira

A word in front, how Jira is used for the OpenEngSB. Jira is used for bug tracking and release planning.

ONLY each Milestone release has its own target. Release candidates and final releases are handled

differently. Since we release RC and MINOR releases quite often its much too much administration

work to keep JIRA up to date.

Ok, knowing that the release process is simple:

• If you release a milestone release close the release target (e.g. 1.0.0.M1)

• If you release a release candidate create a VERSION.RCX release target and close the old one.

• If you release a final release (MAJOR RELEASE) create a new release target 1.0.X.RELEASE.

http://openengsb.org/team-list.html
hkp://pgp.mit.edu/

Release and Release Process

44

• If you release a minor release close the 1.0.X.RELEASE target and create 1.0.(X+1).RELEASE.

24.5. Perform the release

Performing a release is quite simple, because of the maven release plugin and some scripts. Simple

follow these steps:

• 1) Execute ./etc/scripts/release-[final|milestone].sh with the path to your repository (e.g. ~/

openengsb

• Now that the artifacts are available for sync to maven central you have to push them from the staging

to the final repository. Therefore follow the steps as explained here

• If everything works fine execute git push;git push --tags

24.6. Spread the News

Post a message to the OpenEngSB twitter account with the following content:

openengsb-VERSION "NAME" released, closing XX issues (JIRA_RELEASE_REPORT_SHORT_URL).

Try the new features now: http://openengsb.org

24.7. Prepare Changelog

Finally the CHANGELOG.md file has to be updated. Therefore the following template with the correct

version have to be copied in the current changelog file (the latest version always has the most "on-

top" position in the text file):

openengsb-VERSION

Bug fixes

* [e.g.] Fix problem with setting files

New Projects

 * [e.g.] openengsb-core-taskbox

Removed Projects

 * [e.g.] openengsb-domain-scm

Upgraded Projects

 * [e.g.] org.apache.wicket/wicket-*/1.4.13

 * [e.g.] org.eclipse.jgit/org.eclipse.jgit/0.9.14

Remvoed External References

 * [e.g.] javax.ejb/com.springsource.javax.ejb

New Features & Changed Behaviour

* [e.g.] Added possibility to delete workfows

Depricated or Removed Features

* [e.g.] org.openengsb.domain.scm.doSomething() is removed

The following sections explain shortly what changes belong to which part of the changelog.

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide

Release and Release Process

45

24.7.1. Bug Fixes

This section should contain a short description of all things which does not work in a previous version,

but in this one. Bugs which are fixed and introduced during the development (e.g. in a milestone release

do not have to be added here. Only if they exist in a previous final release version. The description

should make it clear for the client which bug we address. An issue number will help but is not requierd.

24.7.2. New Projects

All new projects added to the OpenEngSB (or in any module section in other words) should be listed

here, since it is very likely that the user has to adapt its project according to them. A move of a project

should be logged as add/remove. The artefact name is enough to be mentioned here.

24.7.3. Removed Projects

All projects removed from the OpenEngSB (or from any module section in other words) should be

listed here, since it is very likely that the user has to adapt its proejct according to them. A move of a

project should be logged as add/remove. The artefact name is enough to be mentioned here.

24.7.4. Upgraded and New External References

It is very likely that the client reuqires to use the versions directly anywhere in the project. It is possible

that he wants to stay in snyc in this versions with the OpenEngSB project. Therefore they should be

listend here. A maven like artifact description should be used here.

24.7.5. Remvoed External References

It is very likely that the client reuqires to use the versions directly anywhere in the project. It is possible

that he wants to stay in snyc in this versions with the OpenEngSB project. Therefore they should be

listend here. A maven like artifact description should be used here.

24.7.6. New Features and Changed Behaviour

This section should SHORTLY show a user where he has new possibilities or where he has to adapt

his current code or be especially careful with changes.

24.7.7. Depricated or Removed Features

Depricated or removed features points the user to points in the code where his code will very likely

break. It should be clear for him what he has to do or change.

46

Chapter 25. Admin

This section is relevant for everyone marked in the OpenEngSB Team List as administrator. If you

require anything of the following points to be done please write to the openengsb-dev mailing list or

send a mail directly to one of the administrators.

25.1. Infrastructure

This section describes the OpenEngSB infrastructure and the relevant parts to manage it.

25.1.1. OpenEngSB Infrastructure Server

The main server hosting our selfmaintained infrastructure runs Ubuntu Linux and is hosted under the

domain "openengsb.org". The server is mainained remotely via SSH [pw:server].

An apache2 server processes all requests and forwards it to the corresponding service. The config-

file that connects the subdomains to the corresponding services is located in /etc/apache2/sites-

enabled/000-default.

This forwards point to a directory in /var/www that redirects the browser to the correct page (like

build.openengsb.org -> build.openengsb.org/hudson) The tomcat-server for the homepage is located

in /var/opt/tomcat. JIRA is located in /var/opt/atlassian-jira-enterprise-4.1.2/ Further all passwd-files

to control http-access are located in /etc/apache2

25.1.2. OpenEngSB Build

Hudson is accessible at http://build.openengsb.org. To become an admin create account and write mail

to one of the current admins.

25.1.3. OpenEngSB Issuetracker

JIRA is accessible at http://issues.openengsb.org. To become an admin create account and write mail

to one of the current admins.

25.1.4. OpenEngSB git

The github is located at http://git.openengsb.org. To become an admin create a github-account (if you

don't have one) and write mail to one of the current admins.

25.1.5. OpenEngSB Maven

25.1.5.1. internal

The internal maven-repo is accessible at http://maven.openengsb.org. Use [pw:nexus] to login.

25.1.5.2. external

The external maven-repo hosting released artifacts is located at http://oss.sonatype.org. Use

[pw:maven] to login.

http://openengsb.org/team-list.html
http://build.openengsb.org
http://issues.openengsb.org
http://git.openengsb.org
http://maven.openengsb.org
http://oss.sonatype.org

Admin

47

25.1.6. OpenEngSB Mailinglist

To obtain admin-access for the mailing lists register google-account (if you don't have one), join

mailinglists and write mail to one of the current admins

25.2. Logo Locations and Upgrade

This section describes the locations of the logo and what have to be upgraded to the latest logo. The

following items are used in this section and are (should be) all available within openengsb/etc/branding.

• openengsb.png: The full logo of the OpenEngSB in png format. The size is not too important. At

every location used it is resized according to the requirements automatically.

• openengsb_small.png: A reduced version of the OpenEngSB logo. The most important thing with

this logo is that it have to be rectangular, since some cases require this.

• openengsb.ico: This is the openengsb_small.png logo convert to an ico file. Threfore scale the

openengsb_small.png. On unix install imagemagic and png2ico and follow the following steps.

Before you start upate openengsb_smal.png in etc/branding

convert -resize 64x64 openengsb_small.png openengsb64x64.png
convert -resize 32x32 openengsb_small.png openengsb32x32.png
convert -resize 16x16 openengsb_small.png openengsb16x16.png
png2ico openengsb.ico openengsb16x16.png openengsb32x32.png openengsb32x32.png

25.2.1. External Infrastructure

This section describes which tools have to be upgraded and how this is done.

• Jira: Use openengsb_small.png as project logo.

• Twitter: Use openengsb.png as background and openengsb_small.png as logo.

• Github: Upgrade gravatar with openengsb_icon.png to upgrade openengsb@gmail.com.

• Facebook: Use openengsb.png for the group logo.

• Google Groups: Use openengsb_small.png for the group logos (in all three lists).

25.2.2. Internal Management Application

This section covers how to upgrade the logos in the internal management application located within

openengsb/ui/web.

• src/main/resources/openengsb.png (openengsb.png)

• src/main/resources/openengsb.ico (openengsb.ico)

25.2.3. Documentation

Manual, Maven Site and all additional presentations of the OpenEngSB are covered within this section

describing how and where to upgrade a logo.

http://openengsb.org/community/mailinglists.html

Admin

48

• docs/homepage/src/site/resources/images/openengsb.png uses openengsb.png to present a banner

on the homepage.

• docs/skin/src/main/resources/images/openengsb.ico contains openengsb.ico which is presented as

favicon on openengsb.org

• docs/manual/src/main/docbx/resources/images/openengsb.png contains openengsb.png which

should be presented on the html and pdf documentation of the OpenEngSB.

49

Part V. Appendix

50

Appendix A. Java Coding Style

A.1. Sun Coding Guidelines

The OpenEngSB Coding Guidelines are based upon the Code Conventions for the Java Programming

Language. There are some additions and deviations for this project.

A.1.1. Line length

A line length of 80 was standard 10 years ago, but with increasing screen size and resolution a length

of 120 is more reasonable.

A.1.2. Wrapping

Use the auto-formatter of your IDE. Import the Eclipse Formatter file.

A.1.3. Number of declarations per line

Only one declaration per line is allowed.

A.1.4. Declaration placement

Declare variables where they are needed. It's easier to read and restricts the scope of variables. Don't

overshadow variables.

A.1.5. Blank lines

The body of a method should not start with a blank line.

A.2. General

A.2.1. File format

Every Java file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of

four spaces, tab-stops are not allowed.

A.2.2. Header

Every source file has to start with this header:

/**

 Copyright 2010 OpenEngSB Division, Vienna University of Technology

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://dev.openengsb.org/resources/eclipse/formatter.xml

Java Coding Style

51

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

 */

A.2.3. Duplication

Code duplication has to be avoided at all costs.

A.2.4. Use guards

Guards are a possibility to reduce the amount of nesting. Heavily nested code is much harder to read.

Bad:

public void foo() {

 if (conditionA) {

 if (conditionB) {

 if (conditionC) {

 // do some work

 }

 } else {

 throw new MyException();

 }

 }

}

Good:

public void foo() {

 if (!conditionA) {

 return;

 }

 if (!conditionB) {

 throw new MyException();

 }

 if (!conditionC) {

 return;

 }

 // do some work

}

A.2.5. Keep methods short

Methods longer than 40 lines are candidates for refactoring. A method should only do one thing and

has to be easily understandable. The number of arguments should be minimized. A method should

only be at a single level of abstraction.

A.2.6. Use enums

Prefer typesafe enumerations over integer constants.

Java Coding Style

52

A.2.7. Avoid use of static members

Static members are a sign of a design error because they are like global variables. It's fine if you declare

a constant as final abstract of course.

A.2.8. Use fully qualified imports

Don't import org.example.package.*, instead import the needed classes.

A.2.9. Never declare implementation types

Use interfaces or the abstract base class instead of concrete implementation classes where possible.

Don't write:

ArrayList<String> names = new ArrayList<String>();

Instead use the interface name:

List<String> names = new ArrayList<String>();

This is especially important in method signatures.

A.2.10. SerialVersionUID

Don't declare serialVersionUID just because your IDE tells you. Have a good reason why you need

it. This can cause bugs that are hard to detect.

A.2.11. Restrict scope of suppressed warnings

If you have to suppress a warning make sure you give it the smallest possible scope. This means you

should never annotate a whole class with @SuppressWarnings. A method may be acceptable but you

should try to annotate the problematic statements instead.

A.2.12. Use String.format()

Use String.format() instead of long concatenation chains which are hard to read.

A.2.13. Array declaration style

Always use

 Type[] arrayName;

instead of the C-like

Type arrayName[];

A.2.14. Comments

Don't make funny comments, be professional. All comments have to be in English. Comment what

methods do, not how they do it. Do not comment what is already stated in code.

Java Coding Style

53

A.3. Naming

A.3.1. Interfaces

Interfaces are not marked by starting their names with I. This exposes more information than necessary

and is not Java-like.

A.3.2. Don't abbreviate

Do not use abbreviations if it's not a project wide standard. Long method names are preferable to

inconsistency. With automatic code completion this isn't a problem anyway.

A.4. No clutter

• Exception/Log Messages have to be concise. Don't end messages with "...".

• Don't overuse FINAL, use it where you have a good reason something has to be final. Although it

doesn't hurt to declare everything as final it clutters the code.

• Don't use history tables in source files. Use the SCM system if you are interested in the changes

of a file.

• Don't use the JavaDoc author tag. Also use the SCM system.

• Don't declare unnecessary constructors, especially the empty default constructor.

• Don't make implicit calls explicitly, i.e. calling super(); in every constructor.

• Don't specify modifiers that are implicit, i.e. don't make methods in interfaces public abstract.

• Don't initialize fields with null, they are automatically initialized with null.

• Don't use banners in comments.

• Don't use closing brace comments, i.e. } // end if, they are a sign of too long methods.

• Don't comment out code and commit it. This confuses programmers why it is there. Simply delete

it, it's still present in the SCM history.

A.5. Exception Handling

• Don't log and throw. Either a exception should be logged or thrown to be processed at a more

appropriate place.

• Don't swallow exceptions silently. If you have to do it, you have to make a comment stating the

reason.

• Use runtime exceptions where possible.

• Wrap exceptions in a RuntimeException if you don't want to specify the Exception in your method

signature and you can't handle it.

Java Coding Style

54

• Write meaningful exception message.

A.6. Tests

A.6.1. General

• Make use of JUnit 4 features, e.g. @Test(expected = SomeException.class)

• Tests should not output anything. They have to be automatically verified.

• Don't catch exceptions just to fail manually. Declare the method to throw the exception.

• Install a shutdown hook for test data files. This assures that they will be deleted and the project

remains in a clean state.

• Use Mockito for mocking.

• Tests should have descriptive method names. It should be deducible what will be tested. Bad:

testError(). Good: invalidInMessage_ShouldReturnErrorResponse().

A.6.2. Naming Scheme

The Maven profiles for running the tests are configured to filter based on the naming of the test class.

The package layout is just a further convenience for the developer for running the tests manually.

• Unit Tests test one class/method/feature in isolation from their dependencies by using test doubles

as replacement. They should be fast and need no special environment setup for execution.

• Filenames end with Test.java

• Located in the normal package structure, i.e. outer.project.package.inner.project.package

• Integration Tests combine individual software modules to test their interaction with each other. They

do not need a special environment setup for execution.

• Filenames end with IT.java

• Located in outer.project.package.it.inner.project.package

• User Tests need a special execution environment and thus are not run automatically during any

maven phase.

• Filenames end with UT.java

• Located in outer.project.package.ut.inner.project.package

A.7. XML Formatting

A.7.1. File Format

Every XML file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of

TWO spaces, tabstops are not allowed. The line length shouldn't exceed 120 characters.

http://code.google.com/p/mockito/

Java Coding Style

55

A.7.2. Eclipse Settings

If you use Eclipse please choose these settings for your OpenEngSB workspace:

Eclipse XML Settings

A.7.3. Recommended Readings

• Clean Code, Robert C. Martin, 2008

• Effective Java Second Edition, Joshua Bloch, 2008

• 7 tips on writing clean code

http://www.garshol.priv.no/blog/105.html

56

Appendix B. Writing Code
This chapter is intended for developers. There are no special prerequisites. Each part describes what

a developer has to look at in specific for the OpenEngSB.

B.1. Maven POM files in the OpenEngSB

Following the guidelines of Maven Central, how a pom should be designed it is required to add the

following tags into every and each pom file:

• modelVersion

• groupId

• artifactId

• version

• packaging

• name

• description

• url

• licenses

• scm/url

• scm/connection

• scm/developerConnection

The following listings shows an example of these params for a typical OpenEngSB pom.

<modelVersion>4.0.0</modelVersion>

<groupId>org.openengsb.core</groupId>

<artifactId>openengsb-core-parent</artifactId>

<version>1.1.0-SNAPSHOT</version>

<name>OpenEngSB :: Core :: Parent</name>

<packaging>pom</packaging>

<description>Parent project for all OpenEngSB Core classes</description>

<url>http://www.openengsb.org</url>

<licenses>

 <license>

 <name>Apache 2</name>

 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>

 <distribution>repo</distribution>

 </license>

</licenses>

<scm>

 <connection>scm:git:git://github.com/openengsb/openengsb.git</connection>

 <developerConnection>scm:git:git@github.com:openengsb/openengsb.git</developerConnection>

 <url>http://github.com/openengsb/openengsb</url>

Writing Code

57

</scm>

58

Appendix C. Recommended Eclipse
Plug-ins for Developers

The following plug-ins for Eclipse are recommended for the development of the OpenEngSB. If not

otherwise stated we recommend the latest stable version of the plug-ins. For information about the

basic setup of this plug-ins please take a look into the corresponding plug-in documentation. This

section only gives hints for setup if it is OpenEngSB specific.

C.1. Properties Editor

The properties editor can be used to edit the properties files used for internationalization and

automatically escapes special characters, like the German "ü".

C.2. Spring IDE

Spring IDE adds support for the Spring Framework to the Eclipse platform. Especially editing the

XML configuration files becomes a lot easier, as this plug-in provides code completion and other

useful features.

C.3. Eclipse CS

The checkstyle plugin integrates checkstyle into Eclipse. Conformance with checkstyle criteria has to

be checked before each push to the repository, so integrating the check into the IDE helps developers

to already conform to the checkstyle criteria during development. You have to configure the plug-in

to use our checkstyle configuration file, which can be found here and at /tooling/checkstyle/src/main/

resources/checkstyle.xml starting from the root directory of the OpenEngSB.

C.4. Drools

The Drools plug-in is handy if you want to edit workflows or Drools rules, because it provides syntax

highlighting for rules and a graphical editor for workflows.

http://marketplace.eclipse.org/content/properties-editor-0
http://marketplace.eclipse.org/content/spring-ide
http://marketplace.eclipse.org/content/checkstyle-plug
https://github.com/openengsb/openengsb/blob/openengsb-1.0.2.RELEASE/tooling/checkstyle/src/main/resources/checkstyle.xml
http://marketplace.eclipse.org/content/jboss-drools

59

Appendix D. Writing Documentation
This chapter is intended for developers who write documentation. There are no special prerequisites.

Part one describes how a chapter should be structured. Part two discusses how domains and connectors

should be document. Part three describes how Docbook is used at OpenEngSB.

D.1. General Documentation Guidelines

A chapter should consist of these parts:

Introduction

It should explained who the target audience for this chapter is and in what case this chapter should

be read. There should also be a basic summary of what this chapter is about.

Prerequisites

Any prerequisites should be listed. Link to the appropriate chapter or to a website to give the reader

a good starting point in case they need to learn something else first.

Context

In the context section the reader should learn in which context this chapter is applicable. If

necessary abbrevations and acronyms used in this chapter can be explained here.

Content

The actual content of this chapter. This should be structured in as many sections as appropriate.

Example

If possible there should be an example to illustrate the points of the chapter.

Common Problems

If there are some known pitfalls or bugs they should be described in this section.

Closing Remarks

In this section the content of the chapter can be summarized once more. The reader should get

information on what to do next.

It is not necessary that every part is a docbook section. Parts can be combined if it seems appropriate.

D.2. Document a domain or connector

D.2.1. Domain

Each domain gets their own directory in the user guide at domains/<the-domain-name>. The domain-

specific documentation should be put in a file named domain.xml. The directory will be used to

document connectors for the domain.

The documentation of a domain should at least consist of the following parts:

Description

Describe briefly what the purpose of the Domain is.

Writing Documentation

60

Functional interface

The link to the actual java interface (and any domain models used in the interface) at Github. The

domain interface and models should have enough Javadoc to explain the usage.

Events

If the domain adds new events to the OpenEngSB, the link to the events package at Github should

be provided. The meaning of each events should be documented through the Javadoc at the actual

class.

D.2.2. Connector

A connector for a specific domain should be documented in the domain-specific directory. Add a new

file with the unique name of the connector.

The documentation of a connector should at least conisst of the following parts:

Description

Provide a description of the external tool and its purpose.

External tool configuration

A section on how to configure the actual external tool for usage with the OpenEngSB has to be

provided.

Support for domain interface

Any deviation to the provided functionality of the domain should be documented. E.g a connector

may only implement parts of the domain interface.

D.3. Using Docbook

This is not a DocBook manual but rather an explanation what type of docbook tags are used in this

documentation. If you are new to DocBook you should read DocBook 5: The Definitive Guide.

D.3.1. Tags

DocBook has many tags to choose from. This list describes which tags should be used in which cases.

Tag Description Example

<command> Used for executables Type <command>ls</command> to get the

contents of the directory.

<envar> Used for environment variables PATH

<emphasis> Used to emphasize words in a sentence This chapter explains only the very basics of

Git.

<filename> Used for files and directories You can set environment variables in

<filename>~/.profile</filename>.

<guibutton> Used to describe buttons in a GUI Press <guibutton>Next</guibutton> to

continue with the process.

http://www.docbook.org/tdg5/en/html/docbook.html

Writing Documentation

61

Tag Description Example

<guilabel> Used to describe labels in a GUI Select <guilabel>Copy projects into

workspace</guilabel>

<guimenu> Used to describe menus in a GUI Go to <guimenu>File</guimenu>,

<guimenu>Import...</guimenu>.

<itemizedlist> Used for bullet type lists <itemizedlist><listitem>One</

listitem><listitem>Two</listitem></

itemizedlist>

<listitem> Used for entries in a list <itemizedlist><listitem>One</

listitem><listitem>Two</listitem></

itemizedlist>

<option> Used for options of commands <command>mvn</command>

<option>clean</option> is used to clean the

project.

<orderedlist> Used for numbered lists <orderedlist><listitem>One</

listitem><listitem>Two</listitem></

orderedlist>

<para> Used for paragraphs <para>This is a paragraph.</para>

<programlisting> Used to display code (e.g. XML or

Java). Generally it is a good idea to

wrap the contents of this tag in a

CDATA section.

<programlisting><!

[CDATA[System.out.println("Hello,

world!");]]<</programlisting>

<replaceable> Used for placeholders in examples Type <command> <replaceable>/path/to/

maven</replaceable>

<link> Used for links to external resources You should read <link xlink:href="http://

www.docbook.org/tdg5/en/html/

docbook.html">DocBook 5: The Definitive

Guide</link>.

<xref> Used for internal links This inserts a link to the description

of the the OpenEngSB <xref

linkend="architecture" />.

<userinput> Used for data which is entered by the

user

Type <userinput>n</userinput> to

overwrite the default values.

<warning> Used for warnings about a chapter <warning><para>This chapter is out of

date.</para></warning>

D.3.1.1. Including an image

Images can be included in this way:

<mediaobject>

Writing Documentation

62

 <imageobject>

 <imagedata id="new" fileref="graphics/testclient_message.png"

 format="png" width="400" align="center" />

 </imageobject>

 <caption>Messaging</caption>

</mediaobject>

D.3.1.2. Using a table

There are two types of tables. Normal tables (<table>) and informal tables (<informaltable>)which

don't have a caption. Using informal tables should be fine most of the time. Example:

<informaltable>

 <colgroup>

 <col width="50" />

 <col width="100" />

 </colgroup>

 <thead>

 <tr>

 <td>

 Name

 </td>

 <td>

 Description

 </td>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>

 table

 </td>

 <td>

 A table with a caption

 </td>

 </tr>

 <tr>

 <td>

 informaltable

 </td>

 <td>

 A table without a caption

 </td>

 </tr>

 </tbody>

</informaltable>

D.3.1.3. Generating the documentation

To build the documentation maven with some plugins is used. The full documentation can be generated

in one simple step:

cd docs
mvn clean install -Pdocs

The documentation can be found in docs/target/docbkx in HTML and PDF format.

63

Appendix E. License

 Apache License

 Version 2.0, January 2004

 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use,

 reproduction, and distribution as defined by Sections 1 through

 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized

 by the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all

 other entities that control, are controlled by, or are under

 common control with that entity. For the purposes of this

 definition, "control" means (i) the power, direct or indirect,

 to cause the direction or management of such entity, whether by

 contract or otherwise, or (ii) ownership of fifty percent (50%)

 or more of the outstanding shares, or (iii) beneficial ownership

 of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity

 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making

 modifications, including but not limited to software source code,

 documentation source, and configuration files.

 "Object" form shall mean any form resulting from mechanical

 transformation or translation of a Source form, including but

 not limited to compiled object code, generated documentation,

 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or

 Object form, made available under the License, as indicated by a

 copyright notice that is included in or attached to the work

 (an example is provided in the Appendix below).

License

64

 "Derivative Works" shall mean any work, whether in Source or

 Object form, that is based on (or derived from) the Work and

 for which the editorial revisions, annotations, elaborations,

 or other modifications represent, as a whole, an original work

 of authorship. For the purposes of this License, Derivative

 Works shall not include works that remain separable from, or

 merely link (or bind by name) to the interfaces of, the Work

 and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including

 the original version of the Work and any modifications or

 additions to that Work or Derivative Works thereof, that is

 intentionally submitted to Licensor for inclusion in the Work

 by the copyright owner or by an individual or Legal Entity

 authorized to submit on behalf of the copyright owner. For the

 purposes of this definition,

 "submitted" means any form of electronic, verbal, or written

 communication sent to the Licensor or its representatives,

 including but not limited to communication on electronic mailing

 lists, source code control systems, and issue tracking systems

 that are managed by, or on behalf of, the Licensor for the

 purpose of discussing and improving the Work, but excluding

 communication that is conspicuously marked or otherwise

 designated in writing by the copyright owner as "Not a

 Contribution."

 "Contributor" shall mean Licensor and any individual or Legal

 Entity on behalf of whom a Contribution has been received by

 Licensor and subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions

 of this License, each Contributor hereby grants to You a

 perpetual, worldwide, non-exclusive, no-charge, royalty-free,

 irrevocable copyright license to reproduce, prepare Derivative

 Works of, publicly display, publicly perform, sublicense, and

 distribute the Work and such Derivative Works in Source or

 Object form.

 3. Grant of Patent License. Subject to the terms and conditions of

 this License, each Contributor hereby grants to You a perpetual,

 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

 (except as stated in this section) patent license to make, have

 made, use, offer to sell, sell, import, and otherwise transfer

 the Work, where such license applies only to those patent claims

 licensable by such Contributor that are necessarily infringed by

 their Contribution(s) alone or by combination of their

License

65

 Contribution(s) with the Work to which such Contribution(s) was

 submitted. If You institute patent litigation against any entity

 (including a cross-claim or counterclaim in a lawsuit) alleging

 that the Work or a Contribution incorporated within the Work

 constitutes direct or contributory patent infringement, then any

 patent licenses granted to You under this License for that Work

 shall terminate as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the

 Work or Derivative Works thereof in any medium, with or without

 modifications, and in Source or Object form, provided that You

 meet the following conditions:

 (a) You must give any other recipients of the Work or

 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices

 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works

 that You distribute, all copyright, patent, trademark, and

 attribution notices from the Source form of the Work,

 excluding those notices that do not pertain to any part of

 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its

 distribution, then any Derivative Works that You distribute

 must include a readable copy of the attribution notices

 contained within such NOTICE file, excluding those notices

 that do not pertain to any part of the Derivative Works, in

 at least one of the following places: within a NOTICE text

 file distributed as part of the Derivative Works; within the

 Source form or documentation, if provided along with the

 Derivative Works; or, within a display generated by the

 Derivative Works, if and wherever such third-party notices

 normally appear. The contents of the NOTICE file are for

 informational purposes only and do not modify the License.

 You may add Your own attribution notices within Derivative

 Works that You distribute, alongside or as an addendum to

 the NOTICE text from the Work, provided that such additional

 attribution notices cannot be construed as modifying the

 License.

 You may add Your own copyright statement to Your modifications

 and may provide additional or different license terms and

 conditions for use, reproduction, or distribution of Your

 modifications, or for any such Derivative Works as a whole,

License

66

 provided Your use, reproduction, and distribution of the Work

 otherwise complies with the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state

 otherwise, any Contribution intentionally submitted for

 inclusion in the Work by You to the Licensor shall be under the

 terms and conditions of this License, without any additional

 terms or conditions. Notwithstanding the above, nothing herein

 shall supersede or modify the terms of any separate license

 agreement you may have executed with Licensor regarding such

 Contributions.

 6. Trademarks. This License does not grant permission to use the

 trade names, trademarks, service marks, or product names of the

 Licensor, except as required for reasonable and customary use

 in describing the origin of the Work and reproducing the content

 of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or

 agreed to in writing, Licensor provides the Work (and each

 Contributor provides its Contributions) on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied, including, without limitation, any warranties or

 conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or

 FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for

 determining the appropriateness of using or redistributing the

 Work and assume any risks associated with Your exercise of

 permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,

 whether in tort (including negligence), contract, or otherwise,

 unless required by applicable law (such as deliberate and

 grossly negligent acts) or agreed to in writing, shall any

 Contributor be liable to You for damages, including any direct,

 indirect, special, incidental, or consequential damages of any

 character arising as a result of this License or out of the use

 or inability to use the Work (including but not limited to

 damages for loss of goodwill, work stoppage, computer failure or

 malfunction, or any and all other commercial damages or losses),

 even if such Contributor has been advised of the possibility of

 such damages.

 9. Accepting Warranty or Additional Liability. While redistributing

 the Work or Derivative Works thereof, You may choose to offer,

 and charge a fee for, acceptance of support, warranty, indemnity,

 or other liability obligations and/or rights consistent with this

 License. However, in accepting such obligations, You may act only

License

67

 on Your own behalf and on Your sole responsibility, not on behalf

 of any other Contributor, and only if You agree to indemnify,

 defend, and hold each Contributor harmless for any liability

 incurred by, or claims asserted against, such Contributor by

 reason of your accepting any such warranty or additional

 liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following

 boilerplate notice, with the fields enclosed by brackets "[]"

 replaced with your own identifying information. (Don't include

 the brackets!) The text should be enclosed in the appropriate

 comment syntax for the file format. We also recommend that a

 file or class name and description of purpose be included on the

 same "printed page" as the copyright notice for easier

 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");

 you may not use this file except in compliance with the License.

 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied. See the License for the specific language governing

 permissions and limitations under the License.

	OpenEngSB Manual
	Table of Contents
	Part I. Introduction
	Chapter 1. How to read the Manual
	Chapter 2. What is the Open Engineering Service Bus
	Chapter 3. When to use the OpenEngSB
	3.1. The OpenEngSB as Base Environment
	3.2. Reusing integration Components and Workflows
	3.3. Management Environment
	3.4. Simple Development and Distribution Management
	3.5. Simple Plug-Ins and Extensions

	Part II. OpenEngSB Framework
	Chapter 4. Quickstart
	4.1. Writing new projects using the OpenEngSB
	4.2. Writing Domains for the OpenEngSB
	4.3. Writing Connectors for the OpenEngSB

	Chapter 5. Architecture of the OpenEngSB
	5.1. OpenEngSB Enterprise Service Bus (ESB)
	5.2. OpenEngSB Infrastructure
	5.3. OpenEngSB Components
	5.4. OpenEngSB Tool Domains
	5.5. Client Tools (Service Consumer)
	5.6. Domain Tools (Service Provider)
	5.7. Domain- and Client Tool Connectors

	Chapter 6. Context Management
	Chapter 7. Persistence in the OpenEngSB
	Chapter 8. Workflows
	8.1. Workflow service
	8.2. Rulemanager
	8.3. Processes

	Chapter 9. Taskbox
	Chapter 10. External Domains and Connectors
	10.1. Proxying
	10.1.1. Proxying internal Connector calls

	10.2. Using JMS proxying
	10.2.1. Proxying internal Connector calls
	10.2.2. Event handling via JMS
	10.2.3. Examples
	10.2.3.1. Connect With Python
	10.2.3.2. Connect With CSharp
	10.2.3.3. Connect With Perl

	Chapter 11. OpenEngSB Platform

	Part III. OpenEngSB Available Domains & Connectors
	Chapter 12. Notification Domain
	12.1. Description
	12.2. Functional Interface
	12.3. Connectors
	12.3.1. Email Connector
	12.3.1.1. External Tool Configuration

	Chapter 13. SCM Domain
	13.1. Description
	13.2. Functional Interface
	13.3. Connectors
	13.3.1. Git Connector
	13.3.1.1. External Tool Configuration

	Chapter 14. Issue Domain
	14.1. Description
	14.2. Functional Interface
	14.3. Connectors
	14.3.1. Trac Connector
	14.3.1.1. External Tool Configuration

	Chapter 15. Report Domain
	15.1. Description
	15.2. Functional Interface
	15.3. Connectors
	15.3.1. Plaintext Report Connector
	15.3.1.1. External Tool Configuration

	Chapter 16. Build Domain
	16.1. Description
	16.2. Functional Interface
	16.3. Connectors

	Chapter 17. Test Domain
	17.1. Description
	17.2. Functional Interface
	17.3. Connectors

	Chapter 18. Deploy Domain
	18.1. Description
	18.2. Functional Interface
	18.3. Connectors

	Chapter 19. Multi-Domain Connectors
	19.1. Connectors
	19.1.1. Maven Connector
	19.1.1.1. External Tool Configuration

	Part IV. OpenEngSB Commiters & Contributors
	Chapter 20. Getting Started as a Developer
	20.1. Getting comfortable with the infrastructure
	20.1.1. Mailing Lists
	20.1.2. Jira Issue Tracker
	20.1.3. Code Repository
	20.1.4. Maven Repository
	20.1.5. Build Server

	20.2. Prerequisites
	20.2.1. Installing Git
	20.2.2. Installing Maven

	20.3. Starting OpenEngSB
	20.4. Using Eclipse
	20.5. Using Other IDEs than Eclipse
	20.6. Git Documentation
	20.6.1. Usage
	20.6.2. Github
	20.6.3. Starting up and configure
	20.6.4. Contributor Workflow
	20.6.5. Commiter Workflow
	20.6.6. Additional Rules

	Chapter 21. How To Create an Internal Connector
	21.1. Prerequisites
	21.2. Creating a new connector project
	21.2.1. Using the Maven Archetype
	21.2.2. Using the gen-connector.sh shell script

	21.3. Project Structure
	21.4. Integrating the Connector into the OpenEngSB environment

	Chapter 22. How To Create an Internal Domain
	22.1. Prerequisites
	22.2. Creating a new domain project
	22.2.1. Using the Maven Archetype
	22.2.2. Using the gen-domain.sh shell script
	22.2.3. Project structure

	22.3. Components
	22.4. Connectors

	Chapter 23. Prepare and use Non-OSGi Artifacts
	23.1. Create Wrapped Artifacts
	23.2. Tips and Tricks

	Chapter 24. Release and Release Process
	24.1. Releases and the OpenEngSB
	24.2. Git Branches
	24.2.1. New Feature Workflow
	24.2.2. Milestone Releases
	24.2.3. Release Candidates
	24.2.4. Final and Support Releases

	24.3. Configure Maven
	24.4. Adapt Jira
	24.5. Perform the release
	24.6. Spread the News
	24.7. Prepare Changelog
	24.7.1. Bug Fixes
	24.7.2. New Projects
	24.7.3. Removed Projects
	24.7.4. Upgraded and New External References
	24.7.5. Remvoed External References
	24.7.6. New Features and Changed Behaviour
	24.7.7. Depricated or Removed Features

	Chapter 25. Admin
	25.1. Infrastructure
	25.1.1. OpenEngSB Infrastructure Server
	25.1.2. OpenEngSB Build
	25.1.3. OpenEngSB Issuetracker
	25.1.4. OpenEngSB git
	25.1.5. OpenEngSB Maven
	25.1.5.1. internal
	25.1.5.2. external

	25.1.6. OpenEngSB Mailinglist

	25.2. Logo Locations and Upgrade
	25.2.1. External Infrastructure
	25.2.2. Internal Management Application
	25.2.3. Documentation

	Part V. Appendix
	Appendix A. Java Coding Style
	A.1. Sun Coding Guidelines
	A.1.1. Line length
	A.1.2. Wrapping
	A.1.3. Number of declarations per line
	A.1.4. Declaration placement
	A.1.5. Blank lines

	A.2. General
	A.2.1. File format
	A.2.2. Header
	A.2.3. Duplication
	A.2.4. Use guards
	A.2.5. Keep methods short
	A.2.6. Use enums
	A.2.7. Avoid use of static members
	A.2.8. Use fully qualified imports
	A.2.9. Never declare implementation types
	A.2.10. SerialVersionUID
	A.2.11. Restrict scope of suppressed warnings
	A.2.12. Use String.format()
	A.2.13. Array declaration style
	A.2.14. Comments

	A.3. Naming
	A.3.1. Interfaces
	A.3.2. Don't abbreviate

	A.4. No clutter
	A.5. Exception Handling
	A.6. Tests
	A.6.1. General
	A.6.2. Naming Scheme

	A.7. XML Formatting
	A.7.1. File Format
	A.7.2. Eclipse Settings
	A.7.3. Recommended Readings

	Appendix B. Writing Code
	B.1. Maven POM files in the OpenEngSB

	Appendix C. Recommended Eclipse Plug-ins for Developers
	C.1. Properties Editor
	C.2. Spring IDE
	C.3. Eclipse CS
	C.4. Drools

	Appendix D. Writing Documentation
	D.1. General Documentation Guidelines
	D.2. Document a domain or connector
	D.2.1. Domain
	D.2.2. Connector

	D.3. Using Docbook
	D.3.1. Tags
	D.3.1.1. Including an image
	D.3.1.2. Using a table
	D.3.1.3. Generating the documentation

	Appendix E. License

