OpenEngSB Manual

1.1.0.RC1 "Kind Kenny"

Table of Contents

R oo [T 1 o o PSRRI 1
1. How tO read the ManUalcc.euiiiiiiie et e e e et e e e e e 2
2. What is the Open Engineering SErviCE BUSccuvviiiiee i 3
3. When to use the OpenENQGSBoovviiiii i 4

3.1. The OpenEngSB as Base Environmentccccceoe e, 4
3.2. Reusing integration Components and WOorkflowscccooociiiiiiiiiiniccieeeee, 4
3.3. Management ENVIFONMENToouiiiiiiiiiiees i 4
3.4. Simple Development and Distribution Managementcccoovveeeeiiiieneeniineeens 4
3.5. Simple Plug-INs and EXTENSIONScccuviiiiieeee e eecciiriee e e e e e e e e e s 4

N T (o =PSRRI 5

4. HowTo - Create a connector for an already existing domain for the OpenEngSB 6
3t I o PR 6
4.2. TIME 10 COMPIELEeeeieiiiiiie ettt e e 6
4.3, Prer@QUISITESoeiiiiiiiie ettt et e e et e e e e e e 6
4.4, Step 1 - USE the arChetYPeuvvviiieei et e e 6
4.5. Step 2 - Add the depeNdEnCIEScccviiiiiiie e 7
4.6. Step 3 - Configure the CONNECLOTccooeeeiiiiii 8
4.7. Step 4 - Implement the CONNECIONcooi i 8
4.8. Step 5 - Spring Setup and Internationalizationcooovveeeeiiiieeen e 12
4.9. Step 6 - Start the OpenENgSB with your CONNECLONccovvviiviiiiiieeee e, 13
4.10. Step 7 - Test the NEW CONNECLOTcoiveiiieiiiiiee e 13

[11. OPENENGSB FraMEBWOIK ...cccoiiiiiiiiiiee e e e ettt et e e e e e e e s sttt e e e e e e e e s s annrareeeeeaeeaaanes 14
IO U o = 15

5.1. Writing new projects using the OpenENgSB ... 15
5.2. Writing Domains for the OpenENgSBcoooiiiiiiiiiiie e 15
5.3. Writing Connectors for the OpenENgSBcoooiiiiiiiiiiiiieeiieeee e 15

6. Architecture of the OPENENGSBcooiiiiiiiiiie e 17
6.1. OpenEngSB Enterprise Service BUS (ESB)uvvvvvieeiiiiiiiiiieicee e ceiiieeee e 17
6.2. OpenENgSB INfrastructure ... 18
6.3. OpenENGSB COMPONENEScceieeeiiiiiie e e e e eeeeiiere e e e e e et e e e e e e eeernea e e eeeeeeees 18
6.4. OpenENGSB TOOl DOMAEINSuvvieiiiiiiee it e et 18
6.5. Client TOOIS (ServiCe CONSUME)cocuerieiiiieieeasiieee et e e e 18
6.6. DOmMain TOOIS (ServiCe PrOVIAE!)ccocuuiiieiiiiiieeeieie e 18
6.7. Domain- and Client TOOI CONNECLOISccoviuiiieeiiiiiie e 19

7. ContexXt ManaQEMENTouuiiiiii e e e e e e e e e e e e et e e e e e e e aara 20

8. Persistence in the OPENENQGSBuuuiuiiiiiiiiiiiiiiiiiiirirr———————————————————————— 21

9. Security iN the OPENENGSBooiiiiiiiiie e 22
0.1, USEIMANAGEMENLEeeeeieeiieeee it ee et e e s s s e e e e e e e s samnnrnnereeee s s s aannnnrneeeeeeesaanns 22
0.2, ACCESS CONLIOl .oeeeiiiiiiie e ettt e e e e e e e e e e e e e s s senrbrnaeeaaeeeannes 22
0.3, AULNENTICALIONeviiiiiiiiee ettt e e es 23

10, WOTKFIOWS ...ttt ettt e et e e st e e e e st et e e e e nan e e e e nnnees 24
10.2. WOIKFIOW SEIVICE ...ttt a e e e e e e eeeees 24
10.2. RUIEBIMANAGET ..ottt e e s e e e e 24
FO.3. PrOCESSES ...coeiiiiiii ittt ettt 24

T 1= 1 oo SRR 25

OpenEngSB Manua

11.1. COre FUNCLONEIITY ..oooieveiieeiiiiie ettt e 25
12.2. Ul FUNCLIONAITY oottt a e e e e snnrnae e e e e e 25

12. External Domains and CONNECLOIScccuurieiiiee ettt e e e e e e e e e e e e e e e s s enrrreeeeaeeas 26
2 O 104/ 1 T 26
12.2. USING IM'S PrOXYING .eeeeeeierreeeeiiiieeesaiseeesaaisreeesssseeeesssnneeessnseeesssnnneeesannnneeas 26

13. OPenENGSB PIatfOrM ...t 28
V. OpenEngSB Available Domains & CONNECTONSccoiuiriieiiiiiiee et e e sieee e 29
14. Notification DOMEINuvviiiiie et e e e e e e e r e e e e e e s e anneeees 30
I TR B 7= v] o (o OSSP 30
14.2. Functional INterface ..o 30
e T O] 1o {0 £ 30

TS Y/ 5 To 2= 1 1PNt 31
15,1, DESCIIPLION eeiiiuitiieeeiiteee e ettt ettt e e st e e ettt e e et e e e e e e e e et e e e e anbne e e e annnee s 31
15.2. FUNCLION@l INEEITACE ..oviiiie i 31
T T O] 1o {0 TR 31

16. ISSUE DOMEIN ... 32
00 T I === o 1 oo o S 32
16.2. Functional INterface ..o, 32
T T O] 1= o (o £ 32

A R L= oo A L) 1 7= 1 ISP 33
5 R B TS v] o (o OSSP 33
17.2. Functional INterfacecoooeee i 33
A T O] 1o {0 £ 33

18. BUIA DOMAIN ... 34
S T B <ol] o 1 o o R PP O PPTPPP TP 34
18.2. FUNCLION@l INLEITACE .voveiiee e e e 34
S T T O] 1o {0 R 34

RS T I B o = o SRR 35
S T I === o 1 oo o S 35
19.2. Functional INterface ..o 35
S TR T O] 1= o (o £ 35

A0 DT< o] Fo) VA B o 1 1= 1 o RO PP PSUPPPP 36
20.1. DESCIIPLION oevieeiiiiciiiieee e e e e e ettt e e e e e e s e s e e e e e e s e e s a b e e e e e e e e e e s aanntraneeeaaeeaaanes 36
20.2. FUNCLIONAl TNEEITACEuvviiiiie e a e 36
P20 T 0 0] 1o [0 P 36

21, AUAITING DOMBIN ...coiiiiiiieeiiii et et e e s e e e es e e e s anbr e e e e nnnneee s 37
P T B 1= ot 1 1o o OO PP SPPPRPO 37
21.2. Functional Interface ... 37
21.3. CONNECLOIS ..vvuuiieeeeieeieitieae e e et ettt e e e e et et ab e e e e e e e eetbba s e e e e e e eeabtnn s e e eaaeennes 37

22. MUIti-DOMEIN CONNECLOIScccoiiiiiiiiiiiee e e e e e e ettt e e e e s st e e e e e e e s esaab e e e e e e e e e s e enneees 38
2 T 0] 1o [0 . P 38

V. OpenEngSB Commiters & CONITDULONSc.oviiiieiiiieeeiieee e 39
23. Getting Started aS 8 DEVEIOPEScooiiiieiiiiiie e 40
23.1. Getting comfortable with the infrastructure ... 40
23.2. PrErQQUISITES ...vveeiieeei ittt e e e e e e e st e et e e e e e s ettt e e e e e e e s s st tbaaeeeaaeesssnnnrnrereeaeeas 41
23.3. Starting OPENENQGSB ..ot 41
23.4. USING ECHIPSE ..o, 42

OpenEngSB Manua

23.5. Using Other IDES than ECHPSEovvviiiiiiiiieeiieiee et 42
23.6. Git DOCUMENTALION ...ttt 42
23.7. USEFUI TOOIS ...ttt et e e s 44
24. How To Create an Internal CONNECLONcooiiiiuieiiiiie e e e e e e e e e e e 47
24.1. Prer@QUISITESoeeiiiiiieeee ittt ettt e e 47
24.2. Creating & NEeW CONNECLOr PrOJECTciuvveeeeiiiieee ettt e e et e e et e e e e 47
24.3. PrOJECE SIIUCKUIE ..ottt et e e e s 49
24.4. Integrating the Connector into the OpenEngSB environmentcccvvvvee.. 49
25. How To Create an Internal DOMEINccooiiiiiiieiiiiiie et esieee et 50
P T I o 1= =0 [1 (- 50
25.2. Creating a new domaiN PrOJECTccoivirieiiiiiiee et 50
25.3. COMPONENES .eeiiieeeiiiiiteee et e e e e st er e e e e s s e e e e e e s s s s r e e e e e e e s s sasnnrrreeeeeeeanns 52
P24 Y0 SO0 0] 1 o (o] £ 53
26. Prepare and use NoN-OSGi ATtifaCtScuvvveeieiiee e 54
26.1. Create Wrapped ArtifactSuveieiiiei i 54
26.2. TIPS @NA TTICKS ..uuuuririeiiieieieieuneeiereuernrnrrrnrerererrrrrrrrrrrrrnr. 55
27. Release and REI@ASE PrOCESScccoeiiiiiiiiiiiiee e ettt e e e e e e et e e e e e e s aeeneeeeeeaaeeeans 56
27.1. Releases and the OPENENGSBcooiiiiiiiie e 56
P €) B = = o = PR 57
27.3. CONfIQUIE IMABVENouviieiieeee et e e e e e e e baaereaae e e aas 57
X = o N | - LSRR 58
27.5. Perform the rel@aSse ... 59
27.6. SPread the NEWSooiii e e e e e e e 59
27.7. Prepare ChangelOgcooouveiieiiiiiiee ettt 60
22 T Y o [1011 o PSSP 61
28.1. INFIASIIUCIUIEeiiiiiiieee ittt et et e e e snnnee s 61
28.2. Logo Locations and Upgradecoooiiiiiiieiiie e 62
29. ProjECE ROIES ...uviiiiiiiie ettt e e e e e e e e e e e e e e s e e anb b e e e e e eaeeeaaans 64
20, L U SBS i 64
29.2. CONLMDULOIS ..oiiieeeie et e e e e e e e e eeeeaeeeeans 64
P22 TG T o 11 0 11 PSR 64
29.4. Project Comitee MEMDENSuviiiiiiiiie et 64
30. JAVA COUING SLYIE .eveeeeee e e e e e e e s e st eeaaeeeaaaes 65
30.1. Sun Coding GUIAEIINESuviiiiiiiie e e e 65
2 €1 o - TSR 65
0 T A= 0 11 0o PR PUP PP 68
10020 S N o T o 111 U SRSRRR 68
30.5. EXCEption HaNAIiNGccooueiiiiiiiiie e 68
0.6, TESES ..uuieiie ettt ettt e bt e e e b e e e e nbre e e aas 69
30.7. XML FOIMELtiNG ...oeeiieiiiiiiiiieieee et e et e e e e e eanreees 69
3L WHEING COU ... —————— 71
31.1. Maven POM filesin the OpenENgSBcoooiiiiiiiiiiie e 71
31.2. Using the same dependencies as the OPENENGSBccccccveeviiiiiiiieineeeeenne 72
32. Recommended Eclipse Plug-ins for DEeVEIOPENScooiiiiiiiiiiiiiieciee e 73
32.1. PropertieS EQITOrcociiieiiiie ettt 73
32.2. SPIING IDE ...oiiiiiiiiiiiie ettt et e e nra e e ane 73
32.3. ECHPSE CS ...ttt ettt e et e e e naeeeas 73

OpenEngSB Manua

324, DIOOIS ..., 73
33. Writing DOCUMENEALIONcccoiiiiiiiiii ettt e e e e st e e e e e e e s enannaaee s 74
33.1. General Documentation GUIAEIINEScccvvvieeiie e 74
33.2. Document a domain Or CONNECIONcceeeeeeeieie e, 74
33.3. USING DOCDOOKceeieiiiiieeeiiie ettt e e 75

Part |. Introduction

This parts provides general information to the project, the document, changelog and similar datawhich fits neither
in the framework description nor in the contributor section.

The target audience of this part are devel opers, contributors and managers.

Chapter 1. How to read the Manual

Like any open source project we have the problem that writing documentation is a pain and nobody
is paid for doing it. In combination with the rapidly changing OpenEngSB source base this will lead
to a huge mess within shortest time. To avoid this problem we've introduced regular documentation
reviews and, more importantly, the following rules which apply both for writing the document and
for reading it.

« The manual iswritten as short and precise as possible (Iess text means lesser to read and even lesser
to review)

« The manual does not describe how to use an interface but only coarse grained concepts in the
OpenEngSB. Since the OpenEngSB is not an end user application, but rather a framework for
devel opers we expect that Javadoc is no problem for them. Writing Javadoc and keep it up to date
is still hard for developers, but much easier than maintaining an external document. Therefore, al
conceptsare explained and linked directly to the very well documented interfacesin the OpenEngSB
on Github. To fully understand and use them you'll have to read this manual parallel to theinterface
documentation in the source code.

Chapter 2. What is the Open Engineering Service

Bus

In engineering environmentsalot of different toolsare used. Most of these operate on the samedomain,
but often interoperability isthe limiting factor. For each new project and team member tool integration
has to be repeated again. In general, this ends up with numerous point-to-point connectors between
tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It
simplifiesdesign and implementation of workflowsin an engineering team. The engineering team itself
(or aprocess administrator) is able to design workflows between different tools. The entire description
process happens on the layer of generic domains instead of specific tool properties. This provides an
out of the box solution which allows typical engineering teams to optimize their processes and make
their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of
individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard al integrated tools and
workflows. This offers new ways in notifying managers at the right moment and furthermore allows
avery general, distanced and objective view on a project.

Although this concept isvery powerful it cannot solve every problem. The OpenEngSB is not designed
asagenera graphical layer over an Enterprise Service Bus (ESB) which allowsyou to design ALL of
your processes out of the box. Aslong as you work in the designed domains of the OpenEngSB you
have alot of graphical support and other tools available making your work extremely easy. But when
leaving the common engineering domainsyou al so |eave the core scope of the service bus. OpenEngSB
till allows you to connect your own integration projects, use services and react on events, but you have
to keep in mind that you're working outside the OpenEngSB and "falling back” to classical Enterprise
Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools
aready used for your development process, it will integrate them. Our service busis used to connect
the different tools and design a workflow between them, but not to replace them with yet another
application. For example, software engineers like us love their tools and will fight desperately if you
try to take them away. We like the wheels as they are, but we do not like the way they are put together
at the moment.

Chapter 3. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to
make clear in which situations the OpenEngSB can be useful for you.

3.1. The OpenEngSB as Base Environment

OSGi isavery popular integration environment. Instead of delivering one big product the products get
separated into minor parts and deployed within ageneral envioronment. The problem with this concept
isto get old, well known concepts up and running in the new environment. In addition tools such as
PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as
Karaf alow aricher and easier development. Neverthless, settting up such a system for development
means alot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

3.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start
from the ground and devel op a compl ete, own environment, only using existing connectors. Using the
OpenEngSB not only connectors but an entire integrated process, workflow and event environment
waits for you. In addition connectors to different tools can not only be adapted to the specific needs,
but also simply replaced by other connectors, using the Domain concept.

3.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this
environment can be added to your project standalone (similar to e.g. Tomcat management console€)
you also have the possibility to completely integrate the OpenEngSB management enviornment into
your Apache Wicket application.

3.4. Simple Development and Distribution Management

While typical ESB have to be installed seperately from your application the OpenEngSB is delivered
with your application. Develop your application in the OpenEngSB environment and scripts to embed
your application into the OpenEngSB are provided. In addition easy blending alows to adapt the
OpenEngSB visually to your needs and cooperate design.

3.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven
archetypes Plug-Ins can be created, uploaded and provided to al other OpenEngSB installations or
applications using the OpenEngSB.

Part Il. Tutorials

This part contains tutorials for the OpenEngSB.

Chapter 4. HowTo - Create a connector for an
already existing domain for the OpenEngSB

4.1. Goal

This tutorial describes examplary for all connectors the implementation of an email connector. The
email connector implements the interface of the Chapter 14, Notification Domain, which is aready
implemented in the OpenEngSB. Therefore, this tutorial describes the implementation of a connector
for an already present domain.

4.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes. If you are not familiar with the
OpenEngSB please read this manual from the start or check the homepage for further information.

4.3. Prerequisites

Warning: This section is likely to change in the near future, as domains and connectors are currently
separated from the rest of the OpenEngSB project. Currently connectors are devel oped together with
the core system.

For information about how to get started as contributor to the OpenEngSB project and how to get the
current OpenEngSB source please read the contributor section of the manual: Part V, “OpenEngSB
Commiters & Contributors”.

4.4. Step 1 - Use the archetype

As the development of a connector is arecurring task the OpenEngSB developer team has prepared
Maven archetypes and useful scripts, which provide support for theinitial creation of aconnector. The
script for creating a new connector can be found at "/etc/scripts/gen-connector.sh”.

Go into the directory "/connector" and run from there the "gen-connector.sh” script. The script
generatestheresult in the directory from whereit is started, therefore it is recommended to run it from
the "/connector” directory. Y ou can aso run it from a different directory and copy the resultsinto the
"/connector" directory. Fill in the following values (if no input is provided the default value is kept):

Domai n Nane (i s dommi nnane): notification

Donmain Interface (is NotificationDonain):
Connect or Nanme: enai

Version (is 1.1.0- SNAPSHQOT) :

Project Name (is OpenEngSB :: Connector :: Emmil):

Now the maven archetype is executed. It asks you to confirm the configuration:

groupl d: org. openengsh. connect or
artifactld: openengsb-connector-enai
version: 1.1.0- SNAPSHOT

package: org. openengsb. connect or. enai
connect or Narme: Enmi

http://www.openengsb.org

HowTo - Create a connector for an already
existing domain for the OpenEngSB

connect or NaneLC:. enai

dommi nArtifactld: openengsb-domai n-notification
dorai nl nterface: Notificati onDomai n

domai nPackage: org. openengsh. domai n. notification
nane: OpenEngSB :: Connector :: Email

Y. Iy

A project named "email” is created with the following structure:

emai
|
| ---pom xm
I
|---src
I
|---main
|
|---java
I I
| |---org
I I
| | - - - openengsb
| |
| | - - - connect or
I I
[| ---emai
I I
| | -- - Emai | Servi ceManager . j ava
| |
| |---interna
I I
| | --- Emai | Servicelnpl.java
I I
| | ---Enmi | Servi cel nstanceFactory. java
|
| ---resources
I
| --- META- | NF
I I
I |---spring
| |
| | ---email-context.xm
I
| ---08G - | NF
I
| ---110n

---bundl e. properties

---bundl e_de. properties

All these artifacts will be covered during the implementation of the connector and explained in step
2 of thistutorial.

4.5. Step 2 - Add the dependencies

Let's start with the dependencies. As the email connector will be based upon the javax mail libraries,
we need to include dependencies for the OSGI versions of these artifacts into the pom file located at
"/provision/pom.xml". So we add this dependency to the dependencies section:

HowTo - Create a connector for an already
existing domain for the OpenEngSB

<dependency>
<gr oupl d>or g. apache. servi cem x. bundl es</ gr oupl d>
<artifactld>org.apache. servi cem x. bundl es. javax. mai | </artifactld>
<version>1.4.1 3</version>
</ dependency>

4.6. Step 3 - Configure the connector

To configure the connector as part of the OpenEngSB two more things are necessary. At first we
have to add the connector to the modules section of its parent pom if it is not already present there.
If you have run the "gen-connector" script in the "connector" directory this step should have already
been performed automatically for you. To check or manually add the entry, open the file "/connector/
pom.xml" and add the new connector to the modules section:

<nodul es>
<nodul e>enmi | </ nodul e>

</ nodul es>

The second step is necessary to configure Karaf correctly. Please open the file "/assembly/pom.xml”
and add the following line:

<profile>
<i d>rel ease</i d>

<depl oyURLs>
scan- bundl e: nvn: or g. openengsb. connect or/ openengsb- connect or-emai | /1. 1. 0. RC1,

</ depl oyURLs>

4.7. Step 4 - Implement the connector

Now you can run the following command in the root folder of the OpenEngSB to create an eclipse
project for the new connector:

mvn ecl i pse: eclipse

Now import the connector project into Eclipse and implement the email service by implementing the
classes Email Servicelmpl.java and Email Servicel nstanceFactory.java. We won't go into detail about
the actual mail implementation here, so we encapsul ated the mailing functionality inamail abstraction.
Whilethe class Email Servicelmpl isresponsible for the realization of the domain interface, the factory

HowTo - Create a connector for an already
existing domain for the OpenEngSB

iISsresponsiblefor creating instances of the email service and for publishing the meta data necessary to
configure an instance of the email service. These two classes are now explained in detail.

package org. openengshb. connector.email.internal;
i mport org.openengsb. connector.email.internal.abstraction. Mail Abstracti on;
i nport org.openengsb. connector. enail.internal.abstraction. Mail Properti es;

i nport org.openengsb. core.common. util.AliveState,;

i mport org. openengsb. domai n. noti fication.Notificati onDomai n;
i nport org.openengsb. donai n. noti fication.nodel . Notification;
i mport org.osgi.franmework. Servi ceRegi strati on;

public class Email Servicel npl inplements Notificati onDomain {
private final String id;

private final Mail Abstracti on nmail Abstraction;
private ServiceRegi stration serviceRegistration;
private final MailProperties properties;

public Email Servicelnpl (String id, MilAbstraction mail Abstraction) {
this.id = id;
this.mail Abstraction = mail Abstracti on;
properties = mail Abstracti on. createMail Properties();

}

/**

* Performthe given notification, which defines nessage, recipient, subject and

* attachments.

*/
@verride
public void notify(Notification notification) {

mai | Abstraction. send(properties, notification.getSubject(), notification
. get Message(), notification.getRecipient());

}

/**
* return the current state of the service,
*
* @ee org.openengsb. core. common. Al i veState
*/
@verride
public AliveState getAliveState() {
AliveState aliveState = mail Abstraction.getAliveState();
if (aliveState == null) {
return AliveState. OFFLI NE;
}
return aliveState;

}

public String getld() {
return id,

}

public ServiceRegistration getServiceRegistration() {
return serviceRegi stration;

}

public void setServiceRegi stration(Servi ceRegistration serviceRegistration) {
this. serviceRegi stration = servi ceRegi strati on;

}

public Mail Properties getProperties() {
return properties;

HowTo - Create a connector for an already
existing domain for the OpenEngSB

As you can see, without the mail specific stuff the implementation is quite straight forward. Simply
implement thedomain interface aswell asthe getAliveState() method, whichisused to query to current
status of atool.

package org.openengsb. connector.enmil.internal;

i mport java.util.HashMap;
i nport java.util. Map;

i mport org.openengsb. connector.email.internal.abstraction. Mail Abstraction;

i nport org.openengsb. core. conmon. Servi cel nst anceFact ory;

i mport org. openengsb. core. common. descriptor. AttributeDefinition;

i mport org. openengsbh. core. conmon. descri ptor. Servi ceDescri ptor;

i nport org. openengsb. core. conmon. val i dati on. Mul tipleAttributeValidati onResult;

i mport org. openengsb. core. common. validation. MultipleAttributeValidationResultlnpl;
i mport org. openengsb. domai n. notification.Notificati onDonai n;

public class Email Servicel nstanceFactory inplements
Servi cel nst anceFact ory<Noti fi cati onDomai n, Email Servi cel npl > {

private final Mil Abstracti on mail Abstraction;

public Email Servicel nstanceFactory(Mail Abstracti on mail Abstraction) {
this.mail Abstraction = mail Abstracti on;

}

private void setAttributesOnNotifier(Map<String, String> attributes,
Emai | Servicel npl notifier) {

if (attributes.containsKey("user")) {
notifier.getProperties().setUser(attributes.get("user"));

if (attributes.containsKey("password")) {
notifier.getProperties().setPassword(attributes.get("password"));

if (attributes.containsKey("prefix")) {
notifier.getProperties().setPrefix(attributes.get("prefix"));

if (attributes.containsKey("sntpAuth")) {
notifier.getProperties().setSntpAuth(Bool ean. parseBool ean(attri butes.
get ("snt pAuth")));

if (attributes.containsKey("sntpSender")) {
notifier.getProperties().setSender(attributes.get("sntpSender"));

if (attributes.containsKey("sntpHost")) {
notifier.getProperties().setSntpHost(attributes.get("sntpHost"));

if (attributes.containsKey("sntpPort")) {
notifier.getProperties().setSntpPort(attributes.get("sntpPort"));

] **

* Called when the {@ink #Servi ceDescriptor} for the provided service i s needed.

*

* The {@ode builder} already has the id, service type and inplenmentati on type

10

HowTo - Create a connector for an already
existing domain for the OpenEngSB

* set to defaults.
*/
@verride
public ServiceDescriptor getDescriptor(ServiceDescriptor.Builder builder) {
bui | der. nane("enui |l . nane") . descri ption("enuil.description");

bui | der
.attribute(buil dAttribute(builder, "user", "usernane.output Mode",
"user nane. out put Mode. descri ption"))
.attribute(

bui | der. newAttribute().id("password").nanme("password. out put Mode")
.description("password. out put Mode. descri ption"). defaul t Val ue("")
.required().asPassword().build())
.attribute(buil dAttribute(builder, "prefix", "prefix.outputMde",
"prefix.out put Mode. description"))
.attribute(
bui | der.newAttribute().id("sntpAuth").nanme("mil.sntp. auth. out put Mode")
.description("mail.sntp.auth. out put Mode. descri ption")
.defaul tVal ue("fal se").asBool ean(). bui I d())

.attribute(
bui | dAttri bute(buil der, "sntpSender", "mail.sntp.sender. outputvbde",
“mai |l . snt p. sender . out put Mbde. descri ption"))
.attribute(
bui | dAttri bute(builder, "sntpPort", "mail.sntp.port.outputMde",
"mail .sntp. port.out put Mde. descri ption"))
.attribute(
bui | dAttri bute(builder, "sntpHost", "mail.sntp.host. output Mode",

"mai |l . sntp. host. out put Mbde. description")). build();

return builder. build();

private AttributeDefinition buildAttribute(ServiceDescriptor.Builder builder,
String id, String nanmeld, String descriptionld) {
return builder.newAttribute().id(id).name(naneld).description(descriptionld)
.defaul tVal ue("").required().build();

/**
* Called by the {@ink Abstract Servi ceManager} when updated service attributes for
* an instance are available. The attributes may only contai n changed val ues and
* omt previously set attributes.
*
* @araminstance the instance to update
* @aramattributes the new service settings
*/
@verride
public void updateServicel nstance(Enai | Servi cel npl instance, Mp<String,
String> attributes) {
set AttributesOnNotifier(attributes, instance);

/**

* The {@ink AbstractServiceManager} calls this method each tinme a new service
* instance has to be started.
*
* @aramid the unique id this service has been assigned.
* @aramattributes the initial service settings
*/
@verride
public Email Servicel npl createServicelnstance(String id,
Map<String, String> attributes) {
Emai | Servi cel npl notifier = new Email Servicel npl (id, mail Abstraction);
set AttributesOnNotifier(attributes, notifier);

11

HowTo - Create a connector for an already
existing domain for the OpenEngSB

return notifier;

}

/**

* Validates if the service is correct before updating.

*/
@verride
public MultipleAttributeValidationResult updateValidati on(Email Servicel npl instance,

Map<String, String> attributes) {
return new Miul tipleAttributeValidati onResultlnpl (true,
new HashMap<String, String>());

}

/**

* Validates if the attributes are correct before creation.

*/
@verride
public MiultipleAttributeValidati onResult createValidation(String id,

Map<String, String> attributes) {
return new MiultipleAttributeValidati onResul tlnpl (true,
new HashMap<String, String>());

The factory is more interesting with respect to the OpenEngSB. It is used to create and configure
instances of the email service. Furthermore it is responsible for publishing which properties a
mail notifier needs to be configured in a proper way. The "getDescriptor" method returns a
service descriptor, which is created with the help of a builder. This service descriptor contains
the properties a mail notifier needs. In this case things like user password, smtp server and so
on. The "updateServicelnstance” method updates an aready created instance of the mail service.
Basically this means setting the properties, which are provided in the attributes map parameter (see
"setAttributesOnNotifier" method). The" createServicel nstance" method isresponsiblefor the creation
of a new email service. The methods "updateValidation" and "createValidation" are used to check
properties before "updateServicel nstance” or "createServicelnstance” are called. As the mail service
does not want to check properties beforehand it simply returns that all values are OK.

4.8. Step 5 - Spring Setup and Internationalization

The Maven archetype aready created the spring setup for the email service at src/main/resources/
META-INF/spring. If properties or constructor arguments are needed for the service factory, they have
to be defined in the spring setup here. In our case the mail abstraction hasto be injected as constructor
argument on the creation of the email service factory.

With regards to internationalization it is necessary to add a name and a description for each property
used in the service descriptor (see email service factory). The properties files for English and German
are also already created by the Maven archetype and can be found at " src/main/resources/OSGI-INF/
[10n/". In our case the bundle.properties file contains the following entries:

enai | . nane=Emai | Notification
emai | . description=This is a Email Notification Service

user nane. out put Mode = User nane
user name. out put Mode. descri ption = Specifies the usernane of the email account

12

HowTo - Create a connector for an already
existing domain for the OpenEngSB

passwor d. out put Mode = Password
passwor d. out put Mode. descri ption = Password of the specified user

prefix. out put Mode = Prefix
prefi x. out put Mode. description = Subject prefix for all mails sent by this connector

mai | . snt p. aut h. out put Mode = Aut hentification
mai | . snt p. aut h. out put Mode. description = Specifies if the sntp authentication is on or off

mai | . snt p. sender . out put Mode = Sender Enmil adress
mai | . snt p. sender . out put Mode. descri ption = Specifies the Email adress of the sender

mai | . snt p. port. out put Mode = SMIP Port
mai | . snt p. port. out put Mode. description = Specifies the Port for the snmtp connection

mai | . snt p. host . out put Mode = SMIP Host
mai | . snt p. host . out put Mode. descri pti on = Specifies the SMIP Host name

Asyou can see each property is defined with name and description. The same entries can be found in
the German properties file (bundle_de.properties) with German names and descriptions.

4.9. Step 6 - Start the OpenEngSB with your Connector

After implementing and testing your connector locally you can try to start up the OpenEngSB with
your hew connector. Enter the following commands in the root directory of the OpenEngSB to build
and start the OpenEngSB in devel opment mode:

m/n cl ean install
nm/n pax: provi si on

Now you can enter "list" into the karaf console to check whether your new connector was installed
and started.

4.10. Step 7 - Test the new connector

Now you can use the OpenEngSB administration WebApp (available at http://localhost:8090/
openengsb) to test your new connector. For more information about how to use the WebApp see the
How-to section} of the the OpenEngSB homepage.

13

http://localhost:8090/openengsb
http://localhost:8090/openengsb
http://openengsb.org/howto/howto_logging.html
http://openengsb.org/howto/howto_logging.html

Part lll. OpenEngSB Framework

This part gives an introduction into the OpenEngSB project and explains its base usage environment and the
concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers
installation, configuration and usage of the administration interface to implement a tool environment according
to your needs.

The target audience of this part are developers and contributors.

14

Chapter 5. Quickstart

As adeveloper you have basically two ways in which you can use the OpenEngSB. One option isto
use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to
write Plug-1ns (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

5.1. Writing new projects using the OpenEngSB

TBW

5.2. Writing Domains for the OpenEngSB

To crate anew Domain run ../etc/scripts/gen-domain.sh in the domain folder. The script will ask you
for the name of your domain. Enter the domain name starting with a lower case letter. For the other
questions valid defaults are given.

The new domain project will be added asasubmodule. Y ou eventually want to run mvn eclipse: eclipse
and import the new project in eclipse.

Add the methods your domain supplies to the domain interface. If your domain raises any events add
methods like

voi d rai seEvent (Your Event event);

(your event class subtype of Event as single parameter) to the events interface.

5.3. Writing Connectors for the OpenEngSB

To crate a new Connector run ../etc/scripts/gen-connector.sh in the connector folder. The script will
ask you for the name of the domain you want to implement. Enter the domain name starting with a
lower case letter. You may adapt the name of the implemented domain interface if you it does not
match the naming convention. Supply the name of the connector staring with alower case letter.

The new domain project will be added as asubmodule. Y ou eventually want to run mvn eclipse: eclipse
and import the new project in eclipse.

Implement the domain interface in the supplied class (unfortunately no method stubs are generated).

Unimplemented domain methods should always throw an exception rather than return
default value or do nothing. Therefore each domain method without body must throw
DomainM ethodNotImplementedException to indicate that requested domain functionality is not
implemented.

@verride
public void foo() {
t hrow new Domai nMet hodNot | npl enment edExcepti on();

}

The ServiceFactory hasto supply a ServiceDescriptor that contains all attributes needed to instanciate
the Connector. In the methods createServicelnstance and updateServicel nstance use the provided

15

Quickstart

attributes to create a new new instance or update your Connector. The methods updateValidation
and createValidation should do the same but try to validate the provided attributes first and return a
validation result.

The generated ServiceManager usually does not have to be changed.

16

Chapter 6. Architecture of the OpenEngSB

This chapter tries to give a short summary of the most important concepts in the OpenEngSB
architecture.

The following graphic shows the architecture of the OpenEngSB. In the center we use a bus
system to integrate different modules. In this case we do not use a classical Enterprise Service
Bus (ESB), but rather the OSGi service infrastructure via Spring-DM (Section 6.1, “OpenEngSB
Enterprise Service Bus (ESB)”). We are using Apache Karaf as the OSGi environment. Karaf is
used in this case, instead of a most basic OSGi environment, such as Apache Felix or Eclipse
Equinox , because it supports us with additional features as extended console support and the feature
definitions. This base infrastructure, including all modifications required for the OpenEngSB is
called the Section 6.2, “OpenEngSB Infrastructure”. Within the OpenEngSB Infrastructure so called
Section 6.3, “OpenEngSB Components” and Section 6.4, “OpenEngSB Tool Domains’ are installed.
Both types are written in a VM compatible language, including OSGi configuration files to run in
the OpenEngSB Infrastructure. They are explained later within this chapter. Different tools running
outside the OpenEngSB Infrastructure are called Section 6.5, “Client Tools (Service Consumer)” or
Section 6.6, “Domain Tools (Service Provider)”, depending on their usage scenario. To integrate and
use them within the OpenEngSB so called Section 6.7, “Domain- and Client Tool Connectors’ are
used. All of these concepts are explained within the next sections.

Engineering Service Bus
(OpenEngSB)
Domain Tool Client Tool
i i ESB i
Domain Tools Connectors Tool Domains Core Components Connectors Client Tools
Team Communication
Tool A C Client Tool A
Team Communication
Tool Demain
Team Communication C
Tool B C client Tool B
Electrical Engineering
Tool A Registry
Electrical Engineering Electrical Engineering
Tocl B Tool Domain
workflow
Electrical Engineering -
Tool C
OpenEngSB Infrastructure

Technical view of the OpenEngSB highlighting the
most important concepts of the integration system

6.1. OpenEngSB Enterprise Service Bus (ESB)

One of the principa concepts for the OpenEngSB development is (if possible) to use already existing
and proven solutions rather than inventing new ones. In this manner the OpenEngSB is an extension
to the ESB concept. Typical ESBs such as Apache Servicemix or other JBI or ESB implementations
always have the feeling to be huge and bloated. Complex integration patterns, messaging, huge

17

http://karaf.apache.org
http://felix.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://servicemix.apache.org

Architecture of the OpenEngSB

configuration files and similar concepts/problems lead to this feeling. And those feelings are right.
They are bloated. The OpenEngsB tries a different approach. Using Karaf as its base framework the
environment is VERY lightweight. Depending on your use case you can use different configurations
and packages out of the box.

6.2. OpenEngSB Infrastructure

While Apache Karaf provides a rich environment and functionality we're not done with it. Via the
Spring-DM extension mechanism, AOP and the OSGi listener model the OpenEngSB directly extends
the environment to provide own commands for the console, fine grained security and a full grown
workflow model. These extensions are optional and not required if you want to use the platform alone.
Add or remove them as required for your use case.

6.3. OpenEngSB Components

These libraries are the OpenEngSB core. The core is responsible to provide the OpenEngSB
infrastructure as well as general services such as persistence, security and workflows. To provide best
integration most of these components aretied to the OpenEngSB ESB environment. Nevertheless, feel
free to add or remove them as required for your use case.

6.4. OpenEngSB Tool Domains

Although each tool provider gives a personal touch to its product their design is driven by a specific
purpose. For exampl e, thereare many different issuetrackersavailable, each having itsown advantages
and disadvantages, but all of them can create issues, assign and delete them. Tool Domains are based
on this idea and distill the common functionality for such a group of tools into one Tool Domain
interface (and component). Tool domains could be compared best to the concept of abstract classes
in in object orientated programming languages. Similar to these, they can contain code, workflows,
additional logic and data, but they are useless without a concrete implementation. Together with the
ESB, the OpenEngSB infrastructure and the core components the tool domains finally result in the
OpenEngSB.

6.5. Client Tools (Service Consumer)

Client Tools in the OpenEngSB concept are tools which do not provide any services, but consume
services provided by Tool Domains and Core Componentsinstead. A classical example from software
engineering for a client tool is the Integrated Development Environment (IDE). Developer prefer to
have the entire devel opment environment, reaching from the tickets for a project to its build results, at
hand. On the other hand they do not need to provide any services.

6.6. Domain Tools (Service Provider)

Domain Tools (Service Provider) Domain Tools, compared to Client Tools, denote the other extreme
of only providing services. Classically, single purpose server tools, like issue tracker or chat server,
match the category of Domain Tools best. Most tools in (software+) engineering environments fit of
coursein both categories, but since there are significant technically differences between them they are
described as two different component types.

18

Architecture of the OpenEngSB

6.7. Domain- and Client Tool Connectors

Tool Connectors connecto tools to the OpenEngSB environment. They implement the respective
Tool Domain interface. As Client Tool Connectors they provide a Client Tool with an access to the
OpenEngSB services. Again, Domain- and Client Tool Connectors are mostly mixed up but separated
because of their technical differences. Additionally it is worth mentioning that tools can be integrated
with more than one connector. Thisallows onetool to act in many different domains. Apache Mavenis
an examplefor such multi-purpose tools, relevant for build, aswell astest and deploy of Javaprojects.

19

Chapter 7. Context Management

Each project in the OpenEngSB has its own context to store meta information necessary for running
inside of the OpenEngSB. The context basically is represented as a tree structure with key-value pairs
as leafs.

The context in which aworkflow is executed, arule fired or another action happens can be compared
to the project in which the respective action happens. The context store therefore offers the possibility
to perform project specific configurations.

The context service can be used to query the context and to insert, update or delete values. Note that
under a specific name either anode or a leaf can be found, but not both. That means that the context
can be compared to a file system, where context nodes are directories and context leaves files. The
leaves in the context contain string key-value pairs.

The current context service extends the context service and provides additional methods for the
management new root context entries (which correspond to projects).

The ContextHolder keeps track of the current threads contexts. Invoking the set- and get-method
always manipulate the context of the current Thread. When a new Thread is spawned it inherits the
context from the parent thread.

20

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/context/ContextService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/context/ContextCurrentService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/context/ContextHolder.java

Chapter 8. Persistence in the OpenEngSB

The OpenEngSB has a central persistence service, which can be used by any component within in
the OpenENgSB to store data. The service is designed for flexibility and usability for the storage of
relatively small amounts of data with no explicit performance requirements. If special persistence
features need to be used it is recommended to use a specialized storage rather than the general storage
mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)
mechanisms. Instances of the persistence service are created per bundle and have to make sure that data
isstored persistently. If bundles need to share datathe common persistence service cannot be used, asit
doesnot support thisfeature. The persistence manager isresponsiblefor the management of persistence
service instances per bundle. On the first request from a bundle the persistence manager creates a
persistence service. All later requests from a specific bundle should get the exact same instance of the
persistence service.

The persistence solution of the OpenEngSB was designed to support different possible back-end
database systems. So if a project has high performance or security requirements, which can not be
fulfilled with the default database system used by the persistence service, it is possible to implement
adifferent persistence back-end. To make this exchange easier atest for the expected behavior of the
persistence serviceis provided.

21

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceManager.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java

Chapter 9. Security in the OpenEngSB

9.1. Usermanagement

The OpenEngSB has a central user management service, which can be used for example by an user
interface. The service is designed to manage your users. Y ou can create new user and save them to the
persistence or retrieve, update and del ete them.

The user management needs a back-end database, e.g. the central persistence service of the
OpenEngSB.

Theinterface of the User manager supports basic CRUD mechanisms (create, retrieve, update, delete).
The User is the used user model. It holds attributes like a password, username, if the user is enabled,
or hisaccount is expired or locked. A user isidentified by his username. So the username can not be
changed. Another attribute are the authorities. These are the roles granted to the user. These can be
for example "ROLE_ADMIN" which defines the user as admin. Depending on the roles, a user can
have different rights. For the OpenEngSB-Ul auser hasto have at least therole"ROLE_USER" which
isthe default role.

9.2. Access control

Access control is done on the service level. Core-services and connector-instances are all published as
OSGi-services. Other services and components always reference these service instances. We use the
approach of AOP to achieve security of these services. The openengsb.core.security-bundle publishes
aservicethat serves as amethod-interceptor. When it is attached to a service every method call on the
service is preceeded with an authorization-check.

A reference to the method-interceptor can be obtained by this line in the spring-context.xml

<osgi : reference id="securitylnterceptor” interfacez"org.aopal|iance.intercept.thhodlnterc%ptor" />

In order to attach it to an existing bean, one has to create a ProxyFactoryBean:

<bean i d="secureServi ceManager" cl ass="org. springframework. aop. f ramewor k. Pr oxyFact or yBean" >
<property nanme="proxyl nterfaces">
<val ue>ot her. Servi cel nt er f ace</ val ue>
</ property>
<property nanme="inter cept or Nanes" >

<list>
<val ue>securityl nt erceptor</val ue>
</list>
</ property>
<property name="target" ref="<real Bean>" />
</ bean>

When registering a service in code rather than in a spring context.xml this can be done as seen in the
AbstractServiceManager

i nport org. springfranework. aop. f ranewor k. ProxyFact ory;
/1

...

/1

22

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/security/UserManager.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/security/model/User.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/AbstractServiceManager.java

Security in the OpenEngSB

ProxyFactory factory = new ProxyFactory(serviceOject);
factory. addAdvi ce(securitylnterceptor);
OpenEngSBSer vi ce securedService = (OpenEngSBService) factory.getProxy();

The decision about the alowing the user access to a service as made by looking at the services
instanceld. Therefore, all services that are to be placed under this access control, must implement
OpenEngSBservice, and make sure the instancel d is unigue enough to ensure security. Y ou may want
to derive your service-class from AbstractOpenEngSBService.

The persistence of the security-bundle manages aset of GrantedA uthorities (Roles) for each instancel d.
There is one exception: Users with "ROLE_ADMIN" are always granted access.

9.3. Authentication

This chapter describes how to deal with security in internal bundles and client projects

For authentication the OpenEngSB provides an AuthenticationProvider as a service. It's obtainable
via blueprint.

<reference interface="org. springfranework.security.authentication. Aut henti cati onMapager" />

This service is able to authenticate users
(org.springframework.security.authenti cation.UsernamePasswordA uthenticationToken) and bundles
(org.openengsh.core.security.BundleAuthenticationToken). The use of the former is pretty obvious.
The latter is used for authentication for internal actions, that require elevated privilages. This
authentication should be used with caution, and never be exposed externally for security reasons.

23

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/OpenEngSBService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/AbstractOpenEngSBService.java

Chapter 10. Workflows

The OpenEngSB supportsthe modeling of workflows. This could be done by two different approaches.
First of all arule-based event approach, by defining actions based on events (and their content) which
were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy
to replace and extend. For long running business processes the secondary workflow method could be
used which is based on Section 10.3, “Processes’ described in Drools-Flow.

The workflow service takes "events' as input and handles them using a rulebased system (JBoss
Drooals). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

10.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected
to the environment (domains and connectors). When an event is fired, the workflow-service spawns a
new session of the rulebase. The session gets popul ated with references to domain-services and other
helper-objectsin form of global variables. A drools-session is running in a sandbox. This means that
the supplied globals are the only way of triggering actions outside the rule-session.

10.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the
rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are
saved separately. All elements share a common collection of import- and global-declarations. These
parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or
function to the rulebase, make sure that all imports are present before. Otherwise the adding of the
elements will fail.

10.3. Processes

In addition to processing Events in global/context-specific rules, it is also possible to use them to
control a predefined workflow. The WorkflowService provides methods for starting and controlling
workflow-processes.

When the workflow service receives an event, it is inserted into the rulebase as a new fact (and rules
arefired accordingly). In addition the event is"signaled" to every active workflow-process. Workflow
logic may use specific rulesto filter these events.

24

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/workflow/WorkflowService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/workflow/RuleManager.java

Chapter 11. Taskbox

The Taskbox enables you to combine workflows with Human Interactions.

11.1. Core Functionality

All workflows started in the OpenEngSB are supplied with the global variable ProcessBag. Inside the
workflow you can populate the ProcessBag with your data. As soon as Human Interaction is needed
you have to incorporate the sub-workflow "humantask”, which wraps the ProcessBag into aTask. Y ou
can then query the Taskbox service for open Tasks, and manipulate the data inside of the Task (Not
necessarily by Human Interaction). When you are finished, you again call the Taskbox service and
supply the changed Task. The changed data gets extracted and is handed back over to the workflow.

11.2. Ul Functionality

The Webtaskbox service providesadditional Ul Features, if you want to integrate the Taskbox-Concept
into a wicket Page. Y ou can query the Webtaskbox service for an Overview Panel that displays all
open Tasks. If the default Overview Panel doesn't fit your needs exactly you can develop your own
Ul-Component using the (Core-)Taskboxservice. If you navigate onto a specific Task the Overview
Panel displays a (default) Detail Panel populated with the values of the Task, if there is no custom
Panel registered for the supplied tasktype. Y ou can develop your own Detail-Panels and register them
for a specific Tasktype via the Webtaskbox service.

25

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/workflow/model/ProcessBag.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/taskbox/model/Task.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/core/common/src/main/java/org/openengsb/core/common/taskbox/TaskboxService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/WebTaskboxService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskOverviewPanel.java
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskPanel.java

Chapter 12. External Domains and Connectors

Since tools are mostly neither developed for the OpenEngSB nor written in any way that they can
be directly deployed in the OpenEngSB environment a way is required to connect via different
programming languages than Java and from multible protocols. This section covers the examplesin
different languages and protocols, how such athing can be achived.

12.1. Proxying
The proxy mechanism allows for any method call to be intercepted.

12.1.1. Proxying internal Connector calls

The proxy mechanism allowsto create proxies for any domain. To create a proxy you haveto provide
aport id, destination and service id to call on the remote service. A Port encapsulates the protocol that
is used to call another service. There are an OutgoingPort and IncomingPort interface for respective
purposes. The port id is used to load the Port via OSGI. To include a Port in OPENENGSB it just has
to be exported via OSGI. The destination is a string that has to be correctly interpreted by the port to
call the remote server. The service id is added as metadata do identify the service that shold get called
on the remote server. It may not be needed for certain implementations.

The proxy calls the CallRouter which redirects the methodcall to the respective Port. Security is
implemented in this layer.

12.2. Using JMS proxying

Thecurrent IM S Connector allowsfor internal method callsbeing redirected viaJM Saswell asinternal
services being called.

12.2.1. Proxying internal Connector calls

Whenever now amethod is sent through the IM S Port the call ismarshalled and sent viaJM Sto agqueue
named "receive"". The marshalling is done via JSON. The mapping has the parameters methodName,
args, classes, metadata and potentially answer and callld. methodName gives the name of the method
to call. Args are the serialised parameters of the method. classes are the types of the arguments. This
way it is easy to unmarshall the args into the appropriate classes. metadata is a smple Map which
stores key value pairs. answer can simply be yes or no and denotesif the methodcall wants an answer
tothe call. callld gives the return queue the caller will listen to for an answer.

An answer can have the type, arg, className and metaData properties. type can be Object, Exception
or Void. arg isthe serialised form of the return argument. className is the runtime class of the arg for
deserialisation. metadatais a simple key value store.

12.2.2. Calling internal Services

To call aninternal Service send a methodcall as described before to the "receive” queue on the on the
server you want to call. The service works exactly as defined before.

By default aJMS Broker is started on port 6549.

26

External Domains and Connectors

12.2.3. Examples

12.2.3.1. Connect With Python
To test the OPENENGSB JM S implementation with Python please follow the instructions
The example can be downloaded here

12.2.3.2. Connect With CSharp

The CSharp connector is written on basis of the Apache ActiveMQ NMS connector and with help of
the Spring NmsTemplate. The code is checked into the repository and could be found in nonj ava/
cshar p. There an EngSB.dIn file. This project file has been developed with SharpDevelop 3, but is
also tested with Visual Studio 2008 CSharp Express Edition with the .Net Framework 3.5.

The example can be downloaded here
12.2.3.3. Connect With Perl

As shown in this example you can connect to the OpenEngSB in a similar way as with Python or
CSharp.

The example can be downloaded here

27

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/docs/examples/connectors/python/PythonClient.txt
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.1.0.RC1/openengsb-docs-examples-1.1.0.RC1-python-connector.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.1.0.RC1/openengsb-docs-examples-1.1.0.RC1-csharp-connector.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.1.0.RC1/openengsb-docs-examples-1.1.0.RC1-perl-connector.zip

Chapter 13. OpenEngSB Platform

The aim of the OpenEngSB project, as for every open source project, is to make the life of everyone
better. Or at least the life of engineers ;). With that said, we want to support projects using the
OpenEngSB as base environment, or providing domains and connectors. While it is easy to find a
source repository and use the OpenEngSB (because of its business friendly Apache 2 license), it
is not that easy to get the visibility your project earns. We want to provide you with this visibility
by including your project into the OpenEngSB product family. Basically we provide you with the
following infrastructure:

* Sub domain within the OpenEngSB: yourproject.openengsb.org

» Upload space for a homepage at yourproject.openengsb.org

» Two mailinglists (yourproject-dev@openengsb.org and yourproject-user @openengsb.org)
» A git repository at github.com/openengsb/yourpoject

» A place at our issue tracker

» A place at our build server

To get your project on the infrastructure you have to use the Apache 2 license for your code and use
the OpenEngSB. It is not required to have any existing source base. Simply send your project proposal
to the openengsb-dev mailing list and we'll discuss your project. Don't be afraid; it's not as hard as
it sounds;)

28

Part IV. OpenEngSB Available
Domains & Connectors

This part gives an overview about the domains and their functionality the OpenEngSB supports out of the box.
Furthermore each connector and necessary external tool configuration is explained.

The target audience of this part are devel opers and contributors.

29

Chapter 14. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email
notification.

14.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

14.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

14.3. Connectors

14.3.1. Email Connector
The email connector is asimple notification connector based on the javamail API.
14.3.1.1. External Tool Configuration

No external tool configuration is necessary.

30

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/notification/src/main/java/org/openengsb/domain/notification/NotificationDomain.java

Chapter 15. SCM Domain

The source code management (SCM) domain is the tool domain for all SCM toals, like Git or
Subversion.

15.1. Description

The SCM Domain polls external repositoriesfor changes of content under source control and provides
functionality to copy/export the repository content for further processing.

15.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

15.3. Connectors

15.3.1. Git Connector

The Git Connector isa SCM tool connector for the Git fast version control system.

15.3.1.1. External Tool Configuration
The external Git repository must be anonymously accessible with one of the following protocols:
1. git
2. http
3. ftp

No further configuration is needed.

31

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/scm/src/main/java/org/openengsb/domain/scm/ScmDomain.java
http://git-scm.com/

Chapter 16. Issue Domain
The issue domain isthe tool domain for al issue tracking tools, like Jira, Trac or Mantis.

16.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

16.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

16.3. Connectors

16.3.1. Trac Connector

The Trac Connector isaissuetool connector for the Trac project management and issue tracker system.

16.3.1.1. External Tool Configuration

The external Trac tool hasto be accessible via XmlRpc. For this purpose the XmIRpcPlugin hasto be
installed (see http://trac.edgewall.org/wiki/PluginList).

16.3.2. Jira Connector

The Jira Connector is an issue connector for the Jiraissue and project tracking system.

16.3.2.1. External Tool Configuration

The Jira connector should work with a default Jira installation. However, make sure that the RPC
plugin is enabled as described in the Jira XML-RPC Overview.

32

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/issue/src/main/java/org/openengsb/domain/issue/IssueDomain.java
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/PluginList
http://www.atlassian.com/software/jira/
http://confluence.atlassian.com/display/JIRA/JIRA+XML-RPC+Overview

Chapter 17. Report Domain

The report domain is the tool domain for report generation and management tools.

17.1. Description
The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports
and a category system for report storage.

17.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

17.3. Connectors

17.3.1. Plaintext Report Connector

The plain text report tool connector is simple implementation of the report domain, which generates
plain text reports.

17.3.1.1. External Tool Configuration

No external configuration is needed.

33

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/report/src/main/java/org/openengsb/domain/report/ReportDomain.java

Chapter 18. Build Domain

The build domain isadomain for all build tools, like Maven or Ant.

18.1. Description

The build domain builds a specific pre-configured project or suite of projects.

18.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

18.3. Connectors

This domain is implemented by the Section 22.1.1, “Maven Connector”, which supports multiple
domains.

34

http://maven.apache.org/
http://ant.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/build/src/main/java/org/openengsb/domain/build/BuildDomain.java

Chapter 19. Test Domain
The test domain isadomain for all test tools, like Maven.

19.1. Description

Thetest domain runs all tests for a specific pre-configured project or suite of projects.

19.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

19.3. Connectors

This domain is implemented by the Section 22.1.1, “Maven Connector”, which supports multiple
domains.

35

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/test/src/main/java/org/openengsb/domain/test/TestDomain.java

Chapter 20. Deploy Domain
The deploy domain is adomain for all deploy tools, like Maven.
20.1. Description
The deploy domain deploys a specific pre-configured project or suite of projects.

20.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

20.3. Connectors

This domain is implemented by the Section 22.1.1, “Maven Connector”, which supports multiple
domains.

36

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/deploy/src/main/java/org/openengsb/domain/deploy/DeployDomain.java

Chapter 21. Auditing Domain

The auditing domain provides various auditing services

21.1. Description

The auditing domain stores auditing logs for later retrieval

21.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events
raised by this domain.

21.3. Connectors

21.3.1. Memory Auditing Connector

The memory auditing connector stores every audit call in memory for later retrieval.

37

https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/domain/auditing/src/main/java/org/openengsb/domain/auditing/TestDomain.java

Chapter 22. Multi-Domain Connectors

Some connectors support multiple domains. Therefore they cannot be categorized into a specific
domain.

22.1. Connectors

22.1.1. Maven Connector

The Maven Connector isabuild, test and deploy tool connector for Maven.

22.1.1.1. External Tool Configuration

The Maven executable has to be on the system path to make this connector work.

38

http://maven.apache.org/

Part V. OpenEngSB
Commiters & Contributors

This part explains how to develop additional domains, connectors and similar parts. In addition it explains the
rules and infrastructure according to which the project is devel oped.

The target audience of this part are contributors.

39

Chapter 23. Getting Started as a Developer

This chapter describes the basic steps to get started as a devel oper for the OpenEngSB project.

23.1. Getting comfortable with the infrastructure

23.1.1.

23.1.2.

23.1.3.

23.1.4.

23.1.5.

As any open source project the OpenEngSB development depends on a wide range of different
infrastructural and communication methods to get things done. The following sub-chapters describe
the different tools, their location and usage in the OpenEngSB devel opment process.

Mailing Lists

The most important communication medium for the OpenEngSB development team is email. Mostly
all of the vital design, architectural and infrastructural decisions are discussed on the OpenEngSB
developer list. Therefore, the first step to get involved into the development of the OpenEngSB is to
register to the Google Groups OpenEngSB Developer Mailing List and say hello world.

While natifications from the Hudson Build Server, about code commits and Jira issues are vital
for the OpenEngSB core developer, they may not be as interesting for you. If you get annoyed
by the automatically generated notification mails ignore all mails from openengsb@gmail.com
and noreply@github.com to openengsb-dev@googlegroups.com. Please remember it is important to
configure both, t o and f r omin your filter. Both addresses will aso send notifications directly to you
which are important and should not be ignored!

Jira Issue Tracker

All issues are stored within a Jira instance reachable at issues.openengsb.org. Please use the issue
tracker to keep track of all bugs, ideas and new featuresyou're currently working or of which you think
they might be interesting.

Code Repository

Asfor any open source project the source codeis public available. We've chosen Github for thistask.
The project isavailable at _github.com/openengshb/openengsb.

As explained later within this document Github is not only used to store our code, but also for
collaboration, code review and patch-tracking.

Maven Repository

The OpenEngSB is available at Maven Central. We still have our own Maven repository at
maven.openengsb.org/ and snapshots are available via the sonatype Maven repository at http://
0SS.sonatype.org.

Build Server

The master and integration branch of the OpenEngSB repository are watched and built by a Hudson
build server instance available at build.openengsb.org. Notifications about failures are directly sent to
the OpenEngSB developer list.

40

http://groups.google.com/group/openengsb-dev
http://issues.openengsb.org/jira/browse/OPENENGSB
http://github.com
http://github.com/openengsb/openengsb
http://repo1.maven.org/maven2/org/openengsb/
http://maven.openengsb.org/
http://oss.sonatype.org
http://oss.sonatype.org
http://build.openengsb.org/hudson/

Getting Started as a Devel oper

23.2. Prerequisites

First of al the latest JDK has to be installed on the system and the JAvA_HOMVE variable has to be set
accordingly. All further steps are described in the subsections of this chapter.

23.2.1. Installing Git

Itisassumed that Git isinstalled. For Linux your distribution provides already a packagefor git. Please
use the package manager of your distribution (apt, yum, pacman, ...) toinstall it. For MAC binariesare

available at git-scm.com. For MS users cygwin or msysgit. After installing, set at least the following
variables:

git config - - gl obal user.name "Fi r st nane Last name"
git config - - gl obal user.email user @xanpl e. com
git config - - gl obal core.autcrlf input

23.2.2. Installing Maven

Finally download Apache Maven3 and unpack it. Add the path of the maven binary to your PATH
variable. Furthermore you should set the MAVEN_OPTS environment variable to allow Maven to use
more RAM. If you don't you'll get Out Of Memory errors.

export PATH=$PATH:/ pat h/ t o/ maven/bin
export MAVEN_OPTS="-Xmx1024M -XX:MaxPermSize=512m'

Add these commands to ~/ . bashr ¢ to make the settings permanent.

23.3. Starting OpenEngSB

The next step is to get the OpenEngSB source by checking out the current master using git:
git clone git://github.com/openengsb/openengsb.git

Now start the OpenEngSB by executing

mvn clean install pax:provision

This command builds, tests and runs the OpenEngSB right from your command-line. Executing the
following command will shutdown it again:

41

git-scm.com
www.cygwin.com
code.google.com/p/msysgit

Getting Started as a Devel oper

shutdown

23.4. Using Eclipse

Eclipse had been chosen by the OpenEngSB team as the main development environment. After
checkout the code the following command creates the required Eclipse project files:

mvn install
mvn eclipse:eclipse

Start Eclipse and select any workspace. The folder ecl i pse- wor kspace isignored in the OpenEngSB
project structure for this purpose. But you can choose any other directory if you prefer. At the
preference page go to Java/Build Path/Classpath Variables and create a new M2 _REPO pointing to
~/ . m2/ reposi t ory. Now use File, Import..., Existing Projects into Workspace. As the root directory
select the root of the OpenEngSB source. Eclipse will list several projects and for now it's best to
import them all by clicking Finish.

At openengsb/ et c/ ecl i pse/ eclipse configuration files for formatting and Checkstyle can be found.
These files should be used.

23.5. Using Other IDEs than Eclipse

Basically, the OpenEngSB is developed in plain Java, which means any other IDE than Eclipse can be
used too. While there are tools for most IDEs to use Checkstyle, but non of it supports the formatting
file of the OpenEngSB. Please use Checkstyle, which automatically validates the eclipse formatting
rules too.

23.6. Git Documentation

23.6.1. Usage

First of al this chapter explains only the very basics of Git and only that parts directly relevant for the
development of the OpenEngSB project, but not the entire idea and possibilities of Git. Please read
some tutorials first to get how to work with Git and see this chapter more as an summary! Y ou may
also take alook at the Git Documentation Page and the Pro Git Book.

23.6.2. Github

OpenEngSB isdevel oped at github.com. Please create an account there and exploreitsfeatures. Specify
your real namein theadmin tab and add a picture. Thismakesit easier to associate your commitsto you.

42

http://git-scm.com/documentation/
http://progit.org/book/
http://github.com/

Getting Started as a Devel oper

23.6.3. Starting up and configure

Before starting to work with Git some settings should be applied to Git. Therefore simply execute the
following commands.

git config - - gl obal user.name "Fi r st name Last nanme"
git config - - gl obal user.email user @xanpl e. com

git config - - gl obal color.ui "auto"

git config - - gl obal pack.threads 0"

git config - - gl obal diff.renamelimit "0"

git config - - gl obal core.autocrlf "input"

Additionally execute the specia settings for github as could be found on github in the "Account
Settings” tab is a point "Global git config information”. Please use the two git commands described
there

git config - - gl obal github.user user nane
git config - - gl obal github.tokent oken

If you don't already have an SSH key you can create one by executing ssh-keygen Simply answer all
questions from the application with "enter" without enter any values. Afterwards the content of the
i d_rsa. pub file from your ~/ . ssh/ directory should be submitted to github (Account Settings/SSH
public keys).

23.6.4. Contributor Workflow

Contributor are all developer who like to contribute to the OpenEngSB project, but not have commit
rights to openengsh/openengsb.

Please keep in mind, that this manual isNOT a Git tutorial. Github itself, e.g. provides agreat help at
help.github.com. All base concepts such as forking, pull-requests, ...

Please start by choose or create a new issue. Now create a new fork of the OpenEngSB at Github
(if you've not done aready so; otherwise this is explained here). Clone your fork, but also add
the original openengsb repository as remote repository. This is aso explained here. In difference
to the Github tutorial please do not commit to the master, but rather create a new branch named
OPENENGSB-ISSUE_NUMBER_YOURE_WORKING_ON. Optionally append /DESCRIPTION
(e.g. OPENENGSB-586/mvn-eclipse-downl oad-fix).

git checkout - b OPENENGSB- | SSUE or i gi n/ BRANCH

BRANCH is the point where you like to start your work. If you like to contribute to the head thiswill be
typically integration, but could also beacommit or acompl ete different branch. Thisisthe OpenEngSB
schemafor naming branches and we'll really appreciate if you work according to it.

Now hack, commit and push as you like. If you think you're finished execute the et ¢/ scri pt s/ pre-
push. sh script validating your code, tests, licenses and so on. If everything workswithout errors create

43

http://book.git-scm.com/
http://help.github.com/forking/
http://help.github.com/forking/

Getting Started as a Devel oper

aGithub pull request on Github, between the master or integration branch (depending on whereyou've
created your branch on) and your branch. This processis also explained at help.github.com (here). In
addition it will help if you add the link to the pull request to the issue you're working on. A commiter
will tend as fast as possible to your request and give feedback or directly merge your commit into the
integration/master branch.

23.6.5. Commiter Workflow

The only difference between a commiter and a contributor is that he has to watch and merge branches
of contributors. If acommiter ishappy with thework of acontributor. Comments and other discussions
should be done on the mailing list and/or viathe Github review system and pull requests.

In addition commiters typically do not create forks but rather create their branches directly in the
OpenEngSB repository. Thisis done because the repaository is covered by the OpenEngSB build server
and in addition keeps everything closer together.

23.6.6. Additional Rules

1. (Contributor/Committer) All development is done in branches (also of the core developers) One
exception to this rule exists: Small fixes and maintenance work which is NOT related to a new
feature and does not exceed 2 commits should be cherry-picked into the master directly.

2. (Contributor/Committer) Rebase is not dead (although we use merges). Never ever commit local
merges. You still should develop in local dev branches and rebasing them with the upstream
branches. Only if nobody else has access to your fork you can be sure that nobody changed it!

3. (Committer) If merging branches from forked repositories ALWAY S use the - - no-f f option for
merges; this will always create a merge node (even if a fast-forward merge is possible). Thisis
required to create a clear and consistent history!

4. Avoid backward merges from the master and keep feature branches small! This does not mean that
backward merges from master are forbidden. But they should not be done too often, since they
create a history not easy to read. Please use the method described on this page (with - - no-ff --
no- conmi t) to reduce the number of merge nodes.

5. Use meaningful feature branch names. Using the merge history in the master you can easily follow
the development of features. But this requires (maybe long) good names! In addition, always start
with OPENENGSB-NUMBER of the issue you're working on. Try to always do work based on
issues. If no issue covers what you're doing create one.

23.7. Useful Tools

23.7.1. openengsb-maven-plugin

The openengsb-maven-plugin is a plugin for Apache Maven, intended to simplify various activities
(creating domains or connectors, building arelease artifact of the whole project etc.) when developing
for the OpenEngSB. It is automatically installed into your local maven repository when doing amvn
clean install of the whole project for the first time. You can also install the plugin separately by
invoking mvn clean install within t ool i ng/ openengsb- maven- pl ugi n/ .

http://help.github.com/pull-requests/

Getting Started as a Devel oper

The plugin can be invoked by mvn org.openengsb.tooling.pluginsuite:openengsb-maven-
plugin:<version>:<goal> where ver si on isthe current version of the OpenEngSB and goal denotes
the mojo you want to execute.

If the current version isno SNAPSHOT version, you can abbreviate this long command by following
configuration:

Create~/ . n2/ set ti ngs. xni with the following content:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<settings xm ns="http://mven. apache. org/settings/1.0.0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ SETTI NGS/ 1. 0. 0 http:// maven. apache. or g/ xsd/ setti
<pl ugi nG oups>
<pl ugi nG oup>or g. openengsb. t ool i ng. pl ugi nsui t e</ pl ugi nG oup>
</ pl ugi nG oups>
</settings>

With this configuration above the plugin can be invoked by mvn openengsh:<goal>. But note that
thiswill only work if anon-SNAPSHOT version is available.

23.7.1.1. Goals
assemble

Installs the OpenEngSB. Is equivaent to executing mvn install -Preleasenightly -
Dmaven.test.skip=true

genConnector

Guides interactively through the creation of a connector and generates the artifact via the connector
archetype. For additional info how to create a connector see Chapter 24, How To Create an Internal
Connector

genDomain

Guides interactively through the creation of a domain and generates the artifact via the domain
archetype. For additional info how to create a domain see Chapter 25, How To Create an Internal
Domain

licenseCheck

Performs a check if appropriate license headers are available in every source file. The licenseCheck
mojo wraps the com.mycilamaven-license-plugin. A large part of the default behavior of this
mojo can be changed in t ool i ng/ openengsb- maven- pl ugi n/ src/ mai n/ resour ces/ | i censeMj of
I i censeCheckConfi g. xm . See this site for available configuration options. The openengsb-maven-
plugin needs to be reinstalled after changing its default behavior.

licenseFor mat

Adds a license header to files where the license header is missing. A large part of the default
behavior of this mojo can be changed in t ool i ng/ openengsb- maven- pl ugi n/ src/ mai n/ r esour ces/

45

http://code.google.com/p/maven-license-plugin/wiki/Configuration#maven-license-plugin_configuration_options

Getting Started as a Devel oper

l'i censeMvj o/ | i censeFor mat Confi g. xn . See this site for available configuration options. The
openengsb-maven-plugin needs to be reinstalled after changing its default behavior.

46

http://code.google.com/p/maven-license-plugin/wiki/Configuration#maven-license-plugin_configuration_options

Chapter 24. How To Create an Internal Connector

This chapter describes how to implement a connector for the OpenEngSB environment. A connector
is an adapter between an external tool and the OpenEngSB environment. Every connector belongsto
a domain which defines the common interface of all its connectors. This means that the connector is
responsible to trandate all callsto the common interface to the externally provided tool.

24.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector
then Section 6.4, “OpenEngSB Tool Domains’ is a good starting point. If there's already a matching
domain for thistool it is strongly recommended to useit. But if thistool requires anew domain it has
to be created. Thisis aso described in Chapter 25, How To Create an Internal Domain.

24.2. Creating a new connector project

To take the burden of the developer creating the initial boilerplate code and configuration, a
Maven archetype is provided for creating the initial project structure. Furthermore, if the new
connector is developed inside of the OpenEngSB repository, the openengsb- maven-pl ugi n (see
Section 23.7.1, “openengsh-maven-plugin”) (or the et ¢/ scri pt s/ gen- connect or . sh script, which
wraps the invocation of the maven plugin) should be used for assisted creation of a new connector
project.

24.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genConnect or goa of
the openengsb-maven-plugin executes additional tasks, like the renaming of the resulting project.
Furthermore it tries to make sure that the new project is consistent with the naming conventions of
the OpenEngSB project.

The following parameters have to be specified to execute the correct archetype:
 archetypeGroupld - the groupld of the OpenEngSB connector archetype.
 archetypeArtifactld - the artifactld of the OpenEngSB connector archetype.

« archetypeVersion - the current version of the OpenEngSB connector archetype.

The following parameters have to be defined for the parent of the new connector, which is not only
parent of the connector, but also for the implementation of the domain and al other connectors of
this domain.

» parentArtifactld - the artifactld of the project parent.
The following parameters have to be defined for the domain of the new connector.
« groupld - the groupld of the domain.

* domainArtifactld - the artifactld of the domain.

47

How To Create an Internal Connector

The following parameters have to be defined for the connector.

e artifactld - the connector artifact id. Has to be "openengsb-domains-<yourDomain>-
<yourConnector>".

* version - the package for the source code of the domain implementation. Has to be
"org.openengsb.domains.<yourDomain>".

¢ domaininterface - The name of the domain interface.
« parentPackage - The package in which the domain interface can be found.
« package - the package for the connector code. Usually <parentPackage>.<yourConnector> is used.

* name - the name of the implementation module. Has to be "OpenEngSB :: Domains ::
<yourDomain> :: <yourConnector>"

Where <yourDomain> has to be replaced by your domain name and <yourConnector> has to be

replaced by the respective connector name.

Note that the archetype will use the artifactld to name the project, but the OpenEngSB convention is
to use the connector name. Therefore you will have to rename the resulting project (however if you
use the genConnect or Mojo, this renaming will be performed automatically). Do not forget to check
that the new connector isincluded in the modules section of the domain parent pom.

24.2.2. Using the openengsb- maven- pl ugi n: genConnect or

First make sure that the plugin is installed in your local maven repository (see Section 23.7.1,
“openengsb-maven-plugin”). Then the genConnect or Mojo should be executed from the connector
directory (connect or/) (alternatively the et c/ scri pt s/ gen- connect or . sh script can be used which
invokes the openengsb-maven-plugin for you).

connector $ mvn org.openengsb.tooling.pluginsuite:openengsb-maven-plugin:<version>:genConnector

The mojo tries to guess as much as possible from your previous input. Guessed values are displayed
in brackets. If the guessiswhat you want, simply acknowledge with Ret ur n. The following output has
been recorded by executing the script in the connect or/ directory:

Domain Name [domain]: notification <Enter>

Domain Interface [NotificationDomain]: <Enter>

Connector Name [myconnector]: twitter <Enter>

Version [1.0.0-SNAPSHOT]: <Enter>

Project Name [OpenEngSB :: Domains:: Notification :: Twitter]: <Enter>

Only the domain and connector name was set, everything else has been guessed correctly. After this
inputs the Maven Archetype gets called and may ask you for further inputs. Y ou can simply hit Ret urn
each time, because the values have been aready set by the mojo. If it finishes successfully the new
connector project has been created and you may start implementing.

48

How To Create an Internal Connector

24.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

- pom xm
- src
- main
- java
| - org
| - openengsb
| - domai ns
| - notification
| -- twitter
| - interna
| | -- MyServicelnpl.java
| | -- MServicel nstanceFactory.java
| - MyServi ceManager. j ava
- resources
- META- I NF
| -- spring
| -- connect or - cont ext . xm
- OSA -1 NF
- 110n
- bundl e_de. properties
- bundl e. properties

The WServi cel npl class implements the interface of the domain and thus is the communication
link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run
the end user) enough information on how to configure a connector, the MySer vi cel nst anceFact ory
class provides the OpenEngSB with meta information for configuring and functionality for creating
and updating a connector instances. The MyServi ceManager class connects connector instances
with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as OSGi
services and adds necessary meta information to each instance. Since the basic functionality is
mostly similar for al service managers, the MySer vi ceManager class extends a common base class
Abst ract Servi ceManager . In addition the Abst r act Ser vi ceManager aso persists the configuration
of each connector, so that the connector instances can be restored after a system restart.

The spring setup in the resources folder contains the setup of the service manager. Here additional
bean setup and dependency injection can be configured.

The OpenEngSB has been built with localization in mind. The Maven Archetype aready generates
two bundl e*. properties files, one for English (bundle.properties) and one for the German
(bundle_de.properties) language. Each connector has to provide localization through the properties
filesfor service and attributes text values. Thisincludes |ocalization for names, descriptions, attribute
validators, option valuesand more. For conveniencetheBundl eSt ri ngs classisprovided on al method
callswhere text is needed for user representation for a specific locale.

24.4. Integrating the Connector into the OpenEngSB
environment

The service manager is responsible for the integration of the connector into the OpenEngSB
infrastructure. The correct definition of this serviceis critical.

49

Chapter 25. How To Create an Internal Domain

This chapter describes how to implement a domain for the OpenEngSB environment. A domain
provides a common interface and common events and thereby defines how to interact with connectors
for this domain. For a better description of what a domain exactly consists of, take a look at the
architecture guide Chapter 6, Architecture of the OpenEngSB.

25.1. Prerequisites

In caseit isn't known what adomain is and how it defines the interface and events for connectors, then
Section 6.4, “OpenEngSB Tool Domains’ isagood starting point.

25.2. Creating a new domain project

To get developers started creating a new domain a Maven archetype is provided for creating the
initial project structure. Furthermore, if the new domain is developed in the OpenEngSB repository,
the openengsb- maven- pl ugi n (see Section 23.7.1, “openengsb-maven-plugin”) or the et ¢/ scri pt s/
gen- domai n. sh script (which only wraps the invocation of the plugin) should be used for further
convenience.

25.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genDomain goal of
the openengsb-maven-plugin executes additional tasks, like the renaming of the resulting project.
Furthermore it tries to make sure that the new project is consistent with the naming conventions of
the OpenEngSB project.

The following parameters have to be specified to execute the correct archetype:
« archetypeGroupld - the groupld of the OpenEngSB domain archetype.
 archetypeArtifactld - the artifactld of the OpenEngSB domain archetype.

« archetypeVersion - the current version of the OpenEngSB domain archetype.

Thefollowing parameters have to be defined for the parent of the new domain, whichisnot only parent
of the domain implementation, but also for all connectors of this domain.

« groupld - the groupld of the project parent. Has to be " org.openengsb.domains.<yourDomain>".

 artifactld - the artifactld of the project parent. Has to be "openengsb-domains-<yourDomain>-
parent".

« version - the version of the domain parent, which is usually equal to the current archetype version.

e name - the name of the parent module. Has to be "OpenEngSB :: Domains :: <yourDomain> ::
Parent"

The following parameters have to be defined for the implementation of the new domain.

50

How To Create an Internal Domain

e implementationArtifactld - the implementation artifact id. Has to be "openengsb-domains-
<yourDomain>-implementation".

» package - the package for the source code of the domain implementation. Has to be
"org.openengsb.domains.<yourDomain>".

» implementationName - the name of the implementation module. Has to be "OpenEngSB ::
Domains :: <yourDomain> :: Implementation”

Where <yourDomain> has to be replaced by your domain name, which is usually written in lower

case, like e.g. report for the report domain.

Notethat the archetype will use the artifactld to name the project, but the OpenEngSB convention isto
use the domain name. Therefore you will have to rename the resulting project. Do not forget to check
that the new domain isincluded in the modules section of the domains pom.

25.2.2. Using openengsb- maven- pl ugi n: genDonai n

First make sure that the plugin is installed in your local maven repository (see Section 23.7.1,
“openengsb-maven-plugin”). ThenthegenDomai n Mojo should be executed from the domainsdirectory
in your OpenEngSB repository (alternatively the et c/ scri pt s/ gen- domai n. sh script can be used
which invokes the openengsb-maven-plugin for you).

domains $ mvn org.openengsb.tooling.pluginsuite:openengsb-maven-plugin:<version>:genDomain

You'll be asked to fill in afew variables the script needs to create the initial project structure. Based
on your input, the mojo tries to guess further values. Guessed values are displayed in brackets. If the
guessiscorrect, smply acknowledgewith Ret ur n. Asexampl e, thefoll owing output has been recorded
while creating the Test domain:

Domain Name [mydomain]: test <Enter>
Version [1.0.0-SNAPSHOT]: <Enter>
Prefix for project names[OpenEngSB :: Domains:: Test]: <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed. After giving the
inputs, the Maven archetype gets executed and may ask for further inputs. Y ou can simply hit Ret ur n,
asthevalueshave been aready correctly set. If the mojo finishes successfully two new Maven projects,
the domain parent and domain implementation project, have been created and setup with a sample
implementation for adomain.

25.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

- inplenmentation
- pom xmi
- src

51

How To Create an Internal Domain

- org
- openengsb
- domai ns
- nmydomai n
- MyDonmi n. j ava
- MyDomai nEvents. j ava
- MyDomai nProvi der. j ava

- resources
- META- I NF
| -- spring
| -- nydomai n- cont ext . xm
- 0sd-INF
- 110n
- bundl e_de. properties
- bundl e. properties

- pom xmi

The project contains besides simple stubs for the domain interface, the domain events interface and
the domain provider also a resources folder, which contains the spring setup and property files for
internationalization.

Although the generated domain doesin effect nothing, you can already start the OpenEngSB for testing
with mvn clean install pax:provision and the domain will be automatically be picked up and
started.

The spring setup in the resources folder already contains the necessary setup for this domain to work
in the OpenEngSB environment. Furthermore the default implementation proxies for the domain
interface, which forwards all service calls to the default connector for the domain and the default
implementation of the domain event interface, which forwards all events to the workflow service of
the OpenEngSB are configured.

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. E.g.
theMaven Archetypealready createstobundl e*. properti es files, onefor English (bundle.properties)
and one for the German (bundle_de.properties) language. Each connector has to provide localization
through the properties files. For domains, this only means localization for a name and description of
the domain itself.

25.3. Components

1. Domaininterface - Thisistheinterface that connectors of that domain must implement. Operations
that connectors should provide, are specified here. Events that are raised by this Domain in
unexpected fashion (e.g hew commit in scm system) are specified on the Interface. The Raise
Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation
is put on amethod the events that are specified through the annotation are raised in sequence upon
acall.

2. Domain event interface - Thisis the interface that the domain provides for its connectors to send
eventsinto the OpenEngSB. The event interface containsar ai seEvent (SoneEvent event) method
for each supported event type.

3. Domain Provider - The domain provider is a service that provides information about the domain
itself. It is used to determine which domains are currently registered in the environment. Thereis
an abstract class, that takes over most of the setup.

52

How To Create an Internal Domain

4. Spring context - There are three services, that must be registered with the OSGi service-
environment. First there is the domainprovider of course. Moreover the domain must provide a
kind of connector itself, since it must be able to handle service calls and redirect it to the default-
connector specified in the current context. And finaly the domain provides an event interface
for its connectors, which can be used by them to send events into the OpenEngSB. The default
implementation of this event interface simply forwards all events sent through the domain to the
workflow service. But domains can also provide their own implementation of their event interface
and add data to events or perform other tasks. Thereis a beanfactory that creates a Java-Proxy that
can be used as ForwardService both for the forwarding of service calls from domain to connector
and for the forwarding of events to the workflow service. The service call ForwardService looks
up the default-connector for the specified domain in the current context and forwards the method-
call right to it. The event forward service simply forwards all events to the workflow service of
the OpenEngSB.

25.4. Connectors

For information regarding the implementation of connectors for the newly created domain see
Chapter 24, How To Create an Internal Connector.

53

Chapter 26. Prepare and use Non-OSGi Artifacts

Basically, wrapped JARs do not differ in any way from basic jars, besides that they are deployablein
OSGi environments. They are used asregular jar filesin the OpenEngSB. Nevertheless, the wrapping
itself isnot as painless. This chapter triesto explain the process in detail.

26.1. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1

In case that no osginized library is available in the public repositories a package has to be created.
Because of the simplicity of the process it should be done by hand. First of all create afolder with
the name of the project you like to wrap within openengshb/wrapped. Typically the groupld of the
bundle to wrap is sufficient. For example, for a project wrapping al Wicket bundles the folder
org.apache.wicket is created.

. As anext step add the newly created folder as a module to the openengsb/wrapped/pom.xml file

in the modul e section. For the formerly created Wicket project org.apache.wicket should be added
to the module section.

. Now create a pom.xml file and a osgi.bnd file in the newly created project folder.

. The pom.xml containsthe basic project information. As parent for the project the wrapped/pom.xml

should be used. Basicaly for every wrapped jar the project has the following structure;

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l--

OPENENGSB LI CENSE

-->

<proj ect >

<par ent >
<gr oupl d>or g. openengsb. wr apped</ gr oupl d>
<artifact|d>openengsb-w apped</artifactld>
<ver si on>1</ ver si on>

</ par ent >

<properties>
<bundl e. synbol i cName>wr apped_j ar _gr oup_i d</ bundl e. synbol i cNane>
<wr apped. gr oupl d>wr apped_j ar _gr oup_i d</ wr apped. gr oupl d>
<wr apped. artifactld>w apped_j ar_artifact_id</w apped. artifactld>
<wr apped. ver si on>wr apped_j ar _ver si on</ wr apped. ver si on>
<bundl e. nanespace>${ w apped. gr oupl d} </ bundl e. nanmespace>

</ properties>

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>${ wr apped. gr oupl d} </ gr oupl d>
<artifactl|d>org. openengsb. docs. ${ wr apped. groupl d} </artifact!|d>
<ver si on>${ wr apped. ver si on} </ ver si on>

<nanme>${ bundl e. synbol i cNane} </ name>
<packagi ng>bundl e</ packagi ng>
<dependenci es>

<al | _j ars_whi ch_shoul d_be_enbedded />
</ dependenci es>

Prepare and use Non-OSGi Artifacts

</ proj ect >

5. The osgi.bnd file contains the OSGi specific statements for the maven-bundle-plugin. While the
default export and import are already handled in the root pom project specific settings have to be
configured here. For example all packages within the bundle-namespace are always exported. This
is for most scenarios sufficient. In addition all dependencies found are automatically imported as
required. Thisis generally not desired. Instead the parts of the library which have to be imported
should be defined separately. The following listing gives a short example how such a osgi.bnl file
can look like. For afull list of possible commands see the maven-bundle-plugin documentation.

#

OPENENGSB LI CENSE

#

Enbed- Dependency: *; scope=conpil e|runtine;type=!ponyinline=true

I mport - Package: sun.m sc;resol ution: =optional,\
javax. servlet;version="[2.5.0, 3.0.0)",\
*:resol ution: =optional

26.2. Tips and Tricks

Although the description above sounds quite simple (and wrapping bundles is simple mostly) still
some nasty problems can occur. This section summarizes good tips and ideas how to wrap bundles
within the OpenEngSB.

* The best workflow to wrap a bundle is according to our experiences, to execute the previously
described steps and simply start the OpenEngSB (pax:provision). Either it works or creates a huge
stack of exceptions with missing import statements. Simply try to fulfill one problem, than start
again till all references are resolved.

« Embedding artifacts is nothing bad. Although it is recommended to use all references artifacts of a
bundle directly as OSGi components it can be such a pain sometimes. Some references are simply
not required by any other bundle or are too hard to port. In such cases feel free to directly embed
the dependencies in the wrapped jar.

55

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

Chapter 27. Release and Release Process

This section provides a step by step description to execute a release of the OpenEngSB. It is relevant
for everyone marked in the OpenEngSB Team List as release manager because only they have the
required rights to execute the following steps.

27.1. Releases and the OpenEngSB

Every release of the OpenEngSB consists of the following parts: RELEASE.MAJOR.MINOR.TY PE.
Every release of thistypeisavailableat Maven Central. Optionally SNAPSHOT isappended. Snapshot
releases are avail able from the Sonatype Snapshot repository. This section explainswhat each modifier
means and how it is used within the OpenEngSB.

SNAPSHOTS: Snapshots are always avail able from the latest build of the OpenEngSB. They aretaken
from the master branch automatically at each commit.

TYPE: Type could be MX, RCX or RELEASE, where X is a number. While RELEASE marks a
final release, ready for use in your production environment, M and RC are typically not ready for
production. M standsfor Milestonerelease and is cut every two weeksto present the current state of the
OpenEngSB and allow a coarse grained planning and roadmap for the OpenEngSB team. RC, release
candidates, are handled differently. After everything is finished and the OpenEngSB teams think that
the current work is ready for arelease, we provide a release candidate and invite everyone to test the
release. If there are any issues with the release we fix them and provide another release candidate.
During this process no new features, but only bug fixes are handled. We continue this process aslong
asthere are no new bug reportsfor aRC for two weeks. Then we re-rel ease the | atest rel ease candidate
asfinal release. This process only appliesfor RELEASE and MAJOR. MINOR is handled differently,
as explained later on.

RELEASE is a increasing number used for mayor changes within the OpenEngSB architecture. In
addition all methods and interfaces marked as deprecated are removed during such arelease. Itisaso
possiblethat a REL EA SE does not enhance any mayor architectural concept but is only used to get rid
of all the deprecated methods, generated during MAJOR releases.

MAJOR is the main feature development number of the OpenEngSB. Each release containing new
features will be aMAJOR release. Nevertheless, between MAJOR rel eases architectural concepts are
not removed but only set to deprecated. This means they only enhance functionality but try to not
break with former releases.

MINOR releases are bug-fix releases. They do not include any new features but only fix bugs within
the OpenEngSB. They have no release plan, but are simply cut after each bug-fix.

To visuadize the explained process the following example. Assume we have released
openengsb-1.0.0.RELEASE. Now we're working on openengsb-1.1.0.RELEASE. Therefore we start
developing openengsb-1.1.0.M1 which will be released in two weeks. During the development of
1.1.0.M1 a bug occurs at openengsb-1.0.0.RELEASE. During the development the bug is fixed and
openengsb-1.0.1.RELEASE isreleased. After 1.1.0.M 1 we require three additional milestone releases
to get feature releases. Six weeks after 1.1.0.M1 we'll release 1.1.0.RC1. From now on we continue
to develop 1.2.0.M1 (or 2.0.0.M 1, depending on the gravity of the changes) and wait for feedback on
1.1.0.RC1. Now a bug-report occurs for 1.0.1.RELEASE. We fix the bug, release 1.0.2.RELEASE

56

http://openengsb.org/team-list.html
http://repo1.maven.org/maven2/
https://oss.sonatype.org/content/groups/public/

Release and Release Process

with the fix. If it aso affects 1.1.0.RC1, we fix the bug there too and release 1.1.0.RC2 (still working
on1.2.0.M1(!)). Now assume that some other bug reports are received for 1.0.0.RC2. Wefix them and
release 1.1.0.RC3. In the meantime we finished 1.2.0.M1 and start work on 1.2.0.M2. Now two weeks
after therelease of 1.1.0.RC3 without any new bug-reportswere-release 1.1.0.RC310 1.1.0.RELEASE
(starting the game again from the beginning).

27.2. Git Branches

For the best cooperation between Git and Maven the OpenEngSB team has devel oped its own workflow
with branches during releases. For different project phases (milestone, RC, final, support) different
workflows apply.

27.2.1. New Feature Workflow

For new features the already described workflow apply. This means create a feature branch based on
the integration branch, add your commits and create a pull request if you're finished. Y our changes
will be merged (after review) to the integration branch. From time to time the integration branch ins
merged into the master, which is pushed as snapshots to sonatype.

27.2.2. Milestone Releases

For milestone releases about one day before a planned release a openensb-1.X.0-release branch is
created. This branch can be forward merged to integration as often as liked (no backward merges are
allowed). If al final bugs and changes are done the MX version is released on this branch and the
branch is merged into integration and deleted again. During this process any humber of new features
are merged into integration, without affecting the release any longer.

27.2.3. Release Candidates

RCs are the pre-level for final releases. This means, after the openengsb team decides a release is
ready to go, two new branch are created from the latest commit AFTER the milestone release (where
the mvn versions are set back to the snapshot version): openengsb-1.X.x-dev and openengsb-1.X.x-
release. openengsb-1.X.x-dev is used for bug-fixes. Every fix which should also be merged into
the integration branch/master should be branched off openengsb-1.X.x-dev and afterewards merged
into integration and openengsb-1.X.x-dev. If arelease is ready openengsb-1.X.x-dev is merged into
openengsb-1.X .x-release, where the rel ease takes place. BUT no merge from openengsb-1.X .x-release
to openengsb-1.X .x-release is allowed!

27.2.4. Final and Support Releases

All support and final releases are handled exactly as the RC releases between the openengsb-1.X .x-
dev and openengsb-1.X .x-release branch.

27.3. Configure Maven

For the right rights to deploy to maven central and upload maven site to openengsb.org the following
entries are required in your ~/.m2/settings.xml file:

<settings>

57

Release and Release Process

<server>
<i d>sonat ype- nexus- snapshot s</i d>
<user name>SONATYPE_USERNAME</ user nane>
<passwor d>SONATYPE_PASSWORD</ passwor d>
</ server >
<server>
<i d>sonat ype- nexus- st agi ng</i d>
<user nane>SONATYPE_USERNAME</ user nane>
<passwor d>SONATYPE_PASSWORD</ passwor d>
</ server>
<server>
<i d>OpenengsbWebSer ver </ i d>
<user name>0OPENENGSB_SERVER_USERNAME</ user nane>
<passwor d>OPENEGNSB_SERVER PASSWORD</ passwor d>
</ server>
<profil es>
<profile>
<i d>m | est one</i d>
<properties>
<gpg. passphr ase>GPG_PASSPHRASE</ gpg. passphr ase>
</ properties>
</profile>
<profile>
<i d>rel ease</i d>
<properties>
<gpg. passphr ase>GPG_PASSPHRASE</ gpg. passphr ase>
</ properties>
</profile>
<profile>
<id>final </id>
<properties>
<gpg. passphr ase>GPG_PASSPHRASE</ gpg. passphr ase>
</ properties>
</profile>
</profil es>
<settings>

All the usernames and passwords can be retrieved from someone marked as administrator in the
OpenEngSB Team List.

In addition you have to have a GPG key for your mail address (the same you're using to commit to the
OpenEngSB source repository which is uploaded to the MIT Key Server.

27.4. Adapt Jira

A wordinfront, how Jiraisused for the OpenEngSB. Jiraisused for bug tracking and rel ease planning.
ONLY each Milestone release has its own target. Release candidates and final releases are handled
differently. Since we release RC and MINOR releases quite often its much too much administration
work to keep JRA up to date.

Ok, knowing that the release processis simple;
« |f you release a milestone release close the release target (e.g. 1.0.0.M1)
* If you release arelease candidate create a VERSION.RCX release target and close the old one.

* If yourelease afinal release (MAJOR RELEASE) create anew release target 1.0.X.RELEASE.

If you release a minor release close the 1.0.X.RELEASE target and create 1.0.(X+1).RELEASE.

58

http://openengsb.org/team-list.html
hkp://pgp.mit.edu/

Release and Release Process

27.5. Perform the release

Performing a release is quite simple, because of the maven release plugin and some scripts. Simple
follow these steps:

* 1) Execute ./etc/scripts/release-[final|milestone].sh with the path to your repository (e.g. ~/
openengsb

» Now that the artifacts are available for sync to maven central you have to push them from the staging
to the final repository. Therefore follow the steps as explained _here

« If everything works fine execute git push;git push --tags

27.6. Spread the News

Post a message to the OpenEngSB twitter account with the following content:

openengshb- VERSI ON " NAME" rel eased, closing XX issues (JI RA_RELEASE REPORT_SHORT_URL) .
Try the new features now. http://openengsb.org

Mails in this case are not only used for notification but also to get the developers and usersto try a
new release and report issues and problems. Therefore, we use different templates for different types
of releases of the project.

The following template shows a copy and paste template for mails send for a release candidate. This
mail should only be sent to the developer mailing list:

Hey guys,

I've just upl oaded openengsb-1.0.0.RC4 to naven central (Should be avail abl e
wi thin the next hour).

Sour ces can be downl oaded here:

https://github. com openengsb/ openengsb/ zi pbal | / openengsb- 1. 0. 0. RC4

The binary rel ease can be downl oaded here:

http://repol. maven. or g/ maven2/ or g/ openengsb/ openengsb/ 1. 0. 0. RC4/ openengsb- 1. 0. 0. RC4. zi p

Bet ween openengsb- 1. 0. 0. RC3 and openegnsb-1.0.0. RC4 we' ve fixed the follow ng
i ssues:

* k Bug
* [OPENENGSB-548] - jetty7 - felix problens
* [OPENENGSB- 605] - Use png as favicon for openengsb war file and script

** | nprovenent
* [OPENENGSB- 603] - Context has to be stored persistently and
* restored on system startup
* [OPENENGSB- 610] - Maven connector has to support the execution of a configurable comand

** Task
* [OPENENGSB- 606] - update docs new jira rel ease

** TBD
* [OPENENGSB- 589] - docunent rel ease process for stable branches

59

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide

Release and Release Process

Pl ease give it a try and report all problenms you encounter here
http://issues. openengsh. org/jiral browse/ OPENENGSB/ f i xf or ver si on/ 10142

If there are no new i ssues reported within the next 72 hours | set RC4 as the
final release 1.0.0. RELEASE.

Ki nd regards,
andr eas

27.7. Prepare Changelog

The changelog isafileto inform users about the changesin the version they are using. Thisfile should
only contain the releases which are done in one branch. E.g. the master will never contain changel og
about minor releases; because of the way we handle Jira those changes are captured and included
anyhow.

Now the CHANGEL OG.md file has to be updated. Therefore the following template with the correct
version have to be copied in the current changelog file (the latest version aways has the most "on-
top" position in the text file):

openengsh- VERSI ON

Add a Ceneral Description

H ghlights
* [e.g.] org.openengsb. domai n. scm doSonet hing() is renoved

Details

Copy JI RA issues here

The following sections explain shortly what changes belong to which part of the changel og.

27.7.1. General Description

The general description summarizes the most important changes in this release. This is a short and
verbal description of the changes.

27.7.2. Highlights

The highlight section could be a little bit more detailed than the general description. Things which
should be changed by developers could be explained here and other important points could be lined
up here.

27.7.3. Details

The details section contains a copy of the release notes generated by Jira if a devel oper wants to take
adetailed look at the changes included in this release.

60

Chapter 28. Admin

This section is relevant for everyone marked in the _OpenEngSB Team List as administrator. If you
require anything of the following points to be done please write to the openengsb-dev mailing list or
send amail directly to one of the administrators.

28.1. Infrastructure

28.1.1.

28.1.2.

28.1.3.

28.1.4.

28.1.5.

28.1.5.1.

28.1.5.2.

This section describes the OpenEngSB infrastructure and the relevant parts to manage it.

OpenEngSB Infrastructure Server

The main server hosting our selfmaintained infrastructure runs Ubuntu Linux and is hosted under the
domain "openengsb.org”. The server is mainained remotely via SSH [pw:server].

An apache2 server processes all requests and forwards it to the corresponding service. The config-
file that connects the subdomains to the corresponding services is located in /etc/apache?/sites-
enabled/000-default.

This forwards point to a directory in /var/www that redirects the browser to the correct page (like
build.openengsb.org -> build.openengsb.org/hudson) The tomcat-server for the homepage is located
in /var/opt/tomcat. JIRA islocated in /var/opt/atlassian-jira-enterprise-4.1.2/ Further all passwd-files
to control http-access are located in /etc/apache2

OpenEngSB Build

Hudson is accessible at http://build.openengsb.org. To become an admin create account and write mail
to one of the current admins.

OpenEngSB Issuetracker

JIRA is accessible at http://issues.openengsb.org. To become an admin create account and write mail
to one of the current admins.

OpenEngSB git

The github islocated at http://git.openengsb.org. To become an admin create a github-account (if you
don't have one) and write mail to one of the current admins.

OpenEngSB Maven

internal

Theinternal maven-repo is accessible at http://maven.openengsb.org. Use [pw:nexus] to login.
external

The externa maven-repo hosting released artifacts is located at http://oss.sonatype.org. Use
[pw:maven] to login.

61

http://openengsb.org/team-list.html
http://build.openengsb.org
http://issues.openengsb.org
http://git.openengsb.org
http://maven.openengsb.org
http://oss.sonatype.org

Admin

28.1.6. OpenEngSB Mailinglist

To obtain admin-access for the mailing lists register google-account (if you don't have one), join
mailinglists and write mail to one of the current admins

28.2. Logo Locations and Upgrade

This section describes the locations of the logo and what have to be upgraded to the latest logo. The
following itemsare used in this section and are (should be) all availablewithin openengsb/etc/branding.

 openengsh.png: The full logo of the OpenEngSB in png format. The size is not too important. At
every location used it is resized according to the requirements automatically.

» openengsb_small.png: A reduced version of the OpenEngSB logo. The most important thing with
thislogo isthat it have to be rectangular, since some cases require this.

« openengsh.ico: This is the openengsb_small.png logo convert to an ico file. Threfore scale the
openengsb_small.png. On unix install imagemagic and png2ico and follow the following steps.
Before you start upate openengsb_smal.png in et ¢/ br andi ng

convert -resize 64x64 openengsb_small.png openengsb64x64.png
convert -resize 32x32 openengsb_small.png openengsb32x32.png
convert -resize 16x16 openengsb_small.png openengsb16x16.png
png2ico openengsb.ico openengsbh16x16.png openengsb32x32.png openengsh32x32.png

28.2.1. External Infrastructure
This section describes which tools have to be upgraded and how thisis done.
« Jira: Use openengsb_small.png as project logo.

» Twitter: Use openengsb.png as background and openengsb_small.png as logo.

Github: Upgrade gravatar with openengsb_icon.png to upgrade openengsb@gmail.com.

Facebook: Use openengsh.png for the group logo.

Google Groups: Use openengsb_small.png for the group logos (in all three lists).

28.2.2. Internal Management Application

This section covers how to upgrade the logos in the internal management application located within
openengsb/ui/web.

 src/main/resources/openengsh.png (openengsb.png)
 src/main/resources/openengsh.ico (openengsh.ico)
28.2.3. Documentation

Manual, Maven Site and all additional presentations of the OpenEngSB are covered within this section
describing how and where to upgrade alogo.

62

http://openengsb.org/community/mailinglists.html

Admin

 docs’homepage/src/site/resources/images/openengsh.png uses openengsh.png to present a banner
on the homepage.

« docg/skin/src/main/resources/images/openengsh.ico contains openengsb.ico which is presented as
favicon on openengsb.org

» docs/manual/src/main/docbx/resources/images/openengsh.png contains openengsb.png which
should be presented on the html and pdf documentation of the OpenEngSB.

63

Chapter 29. Project Roles

This section describes the how the roles in the OpenEngSB Project are defined.

Basically the OpenEngSB is, from it's structure exactly as any Apache Software Foundation (ASF)
project. We split the different rolesin User, Contributor, Commiters and Project Comitee Members. In
addition the OpenEngSB is developed in ametocracy, similar to ASF the persons doing the most affect
the project most. Basically the only reason we're not an ASF project isthat we prefer using GIT)

29.1. Users

Users are persons using the OpenEngSB.

Thisgroup does not contribute in the OpenEngSB project in any way. They downl oad the OpenEngSB,
use it and may ask questionsin the IRC channel or on the mailing lists.

29.2. Contributors

Contributors are users who contribute ideas, issues or pull requests.

Basically the only difference between users and contributors are that they actively contribute to the
OpenEngSB in one or another way. Those users have full rights on the issue tracker after they've
created an account but are not allowed to access the OpenEngSB core repos with write karma.

29.3. Commiters

Commiters have the same rights as contributors with the difference that they have wirte access to the
OpenEngSB Github repositories. They are allowed to directly push changes, but also should review
pull-requests.

To become a commiter a person have to be active on different parts of the OpenEngSB. Provide
patches, write documentation, answer on the user mailing list and the IRC channel. If a contributor is
activefor an undefined time the project comitee members may vote to add a contributor to acommiter.

29.4. Project Comitee Members

Project comitee members have the same rights as commiters, with the difference that they are
responsible for the project. PMCs relese the OpenEngSB, vote contributors to commiters and
commitersto PMCs.

Every commiter can become a PM C through active contribution to the OpenEngSB.

64

Chapter 30. Java Coding Style

30.1. Sun Coding Guidelines

30.1.1.

30.1.2.

30.1.3.

30.1.4.

The OpenEngSB Coding Guidelines are based upon the Code Conventions for the Java Programming
Language. There are some additions and deviations for this project.

Line length

A line length of 80 was standard 10 years ago, but with increasing screen size and resolution alength
of 120 is more reasonable.

Wrapping

Use the auto-formatter of your IDE. Import the Eclipse Formatter file.

Number of declarations per line

Only one declaration per lineis allowed.

Declaration placement

Declare variables where they are needed. It's easier to read and restricts the scope of variables. Don't
overshadow variables.

30.1.5. Blank lines
The body of a method should not start with a blank line.

30.2. General

30.2.1. File format
Every Java file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of
four spaces, tab-stops are not allowed.

30.2.2. Header

Every source file has to start with this header:

/**
Copyright 2010 OpenEngSB Division, Vienna University of Technol ogy
Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.

You may obtain a copy of the License at

http://ww. apache. org/ i censes/ LI CENSE-2. 0

65

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://dev.openengsb.org/resources/eclipse/formatter.xml

Java Coding Style

Unl ess required by applicable |law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

*/

30.2.3. Duplication
Code duplication hasto be avoided at all costs.

30.2.4. Use guards

Guards are a possihility to reduce the amount of nesting. Heavily nested code is much harder to read.
Bad:

public void foo() {
if (conditionA) {
if (conditionB) {
if (conditionC) {
/1 do sone work
}
} else {
t hrow new MyException();
}

}

Good:

public void foo() {
if (!conditionA) {
return;

}

if (!conditionB) {
t hrow new MyException();
}

if ('conditionQ {
return;

}

// do sone work

30.2.5. Keep methods short
Methods longer than 40 lines are candidates for refactoring. A method should only do one thing and
has to be easily understandable. The number of arguments should be minimized. A method should
only be at asinglelevel of abstraction.

30.2.6. Use enums

Prefer typesafe enumerations over integer constants.

66

Java Coding Style

30.2.7. Avoid use of static members

Static membersareasign of adesign error becausethey arelike global variables. It'sfineif you declare
aconstant as final abstract of course.

30.2.8. Use fully qualified imports
Don't import org.example.package.*, instead import the needed classes.
30.2.9. Never declare implementation types

Use interfaces or the abstract base class instead of concrete implementation classes where possible.
Don't write:

ArraylList<String> names = new ArraylList<String>(); ‘
Instead use the interface name:
Li st<String> names = new ArrayList<String>(); ‘

Thisis especialy important in method signatures.
30.2.10. SerialVersionUID

Don't declare serialVersionUID just because your IDE tells you. Have a good reason why you need
it. This can cause bugs that are hard to detect.

30.2.11. Restrict scope of suppressed warnings
If you have to suppress a warning make sure you give it the smallest possible scope. This means you
should never annotate a whole class with @SuppressWarnings. A method may be acceptable but you
should try to annotate the problematic statements instead.

30.2.12. Use String.format()
Use String.format() instead of long concatenation chains which are hard to read.

30.2.13. Array declaration style

Always use

Type[] arrayNaneg; ‘

instead of the C-like

Type arrayNane[]; ‘

30.2.14. Comments

Don't make funny comments, be professional. All comments have to be in English. Comment what
methods do, not how they do it. Do not comment what is already stated in code.

67

Java Coding Style

30.3. Naming

30.3.1. Interfaces

Interfaces are not marked by starting their nameswith |. Thisexposes moreinformation than necessary
and is not Java-like.

30.3.2. Don't abbreviate

Do not use abbreviations if it's not a project wide standard. Long method names are preferable to
inconsistency. With automatic code completion thisisn't a problem anyway.

30.4. No clutter

« Exception/Log Messages have to be concise. Don't end messages with "...".

« Don't overuse FINAL, use it where you have a good reason something has to be final. Although it
doesn't hurt to declare everything asfinal it clutters the code.

» Don't use history tables in source files. Use the SCM system if you are interested in the changes
of afile.

e Don't use the JavaDoc author tag. Also use the SCM system.

« Don't declare unnecessary constructors, especially the empty default constructor.

» Don't make implicit calls explicitly, i.e. calling super(); in every constructor.

» Don't specify modifiersthat are implicit, i.e. don't make methods in interfaces publ i ¢ abstract .
» Dontinitialize fields with null, they are automatically initialized with null.

» Don't use bannersin comments.

« Don't use closing brace comments, i.e. } // end if, they are asign of too long methods.

< Don't comment out code and commit it. This confuses programmers why it is there. Simply delete
it, it's still present in the SCM history.

30.5. Exception Handling

« Don't log and throw. Either a exception should be logged or thrown to be processed at a more
appropriate place.

« Don't swallow exceptions silently. If you have to do it, you have to make a comment stating the
reason.

* Use runtime exceptions where possible.

* Wrap exceptionsin a RuntimeException if you don't want to specify the Exception in your method
signature and you can't handleit.

68

Java Coding Style

Write meaningful exception message.

30.6. Tests

30.6.1. General

Make use of JUnit 4 features, e.g. @T est(expected = SomeException.class)
Tests should not output anything. They have to be automatically verified.
Don't catch exceptions just to fail manually. Declare the method to throw the exception.

Install a shutdown hook for test data files. This assures that they will be deleted and the project
remainsin aclean state.

Use Mockito for mocking.

Tests should have descriptive method names. It should be deducible what will be tested. Bad:
testError().Good: i nval i dl nMessage_Shoul dRet ur nEr r or Response() .

30.6.2. Naming Scheme

The Maven profiles for running the tests are configured to filter based on the naming of the test class.
The package layout is just afurther convenience for the developer for running the tests manually.

Unit Tests test one class/method/feature in isolation from their dependencies by using test doubles
as replacement. They should be fast and need no special environment setup for execution.

Filenames end with Test.java
Located in the normal package structure, i.e. out er. proj ect . package. i nner . pr oj ect . package

Integration Testscombineindividual software modulesto test their interaction with each other. They
do not need a special environment setup for execution.

Filenames end with I T .java
Located inout er . proj ect . package. i t.inner. proj ect. package

User Tests need a special execution environment and thus are not run automatically during any
maven phase.

Filenames end with UT .java

Located inout er . proj ect . package. ut . i nner . proj ect . package

30.7. XML Formatting

30.7.1. File Format

Every XML file has to be UTF-8 encoded and has to use UNIX line endings. |ndentations consist of
TWO spaces, tabstops are not allowed. The line length shouldn't exceed 120 characters.

69

http://code.google.com/p/mockito/

Java Coding Style

30.7.2. Eclipse Settings

If you use Eclipse please choose these settings for your OpenEngSB workspace:

ﬂ Preferences l =l -th

type filter text Editor =T > =

Save Actions -

XML editing preferences. Mote that some preferences may be set on the

Syntax Colerin
4 g Structured Text Editors preference page.

Temnplates
Typing
- Installed JREs Formatting
JUnit Line width: 120
Properties Files Editc [l Split multiple attributes each on a new line
Java EE

["] Align final bracket in multi-line element tags
[¥] Preserve whitespace in tags with PCDATA content

Plug-in Development

Remote Systems

. Run/Debug [] Clear all blank lines
> Server [¥]Insert whitespace before closing ernpty end-tags
» Tasks () Indent using tabs
» Team (@ Indent using spaces
Terrmnal | | | e L T s
> Usage Data Collector e
Validation Content assist
- Web 7] Automatically mak cti
. Web Services utormatically make suggestions
. ¥Doclet E Prompt when these characters are inserted: <=:
4 XML . -
Suggestion strategy: Strict -
. DTD Files el L
AML Catalog Grammar Constraints
4 XML Files [¥] Use inferred grammar in absence of DTD/Schema
+ | Editor
Walidation

» XML Schemna Files

- XPath

. HSL ™

7] |P—T—— [Restore Qefaults] [Apply]

0K] ’ Cancel]

Eclipse XML Settings

30.7.3. Recommended Readings
* Clean Code, Robert C. Martin, 2008
« Effective Java Second Edition, Joshua Bloch, 2008

e 7 tipson writing clean code

http://www.garshol.priv.no/blog/105.html

Chapter 31. Writing Code

This chapter isintended for developers. There are no special prerequisites. Each part describes what

adeveloper has to look at in specific for the OpenEngSB.

31.1. Maven POM files in the OpenEngSB

Following the guidelines of Maven Central, how a pom should be designed it is required to add the

following tags into every and each pom file:
* modelVersion
 groupld

* artifactld

* version

» packaging

* name

* description

o url

* licenses

* scm/url

* scm/connection

» scm/devel operConnection

The following listings shows an example of these params for a typical OpenEngSB pom.

<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>or g. openengsb. cor e</ gr oupl d>
<artifactl|d>openengsbh-core-parent</artifactld>
<ver si on>1. 1. 0- SNAPSHOT</ ver si on>
<nanme>QCpenEngSB :: Core :: Parent</nanme>
<packagi ng>ponx/ packagi ng>

<descri ption>Parent project for all OpenEngSB Core cl asses</description>

<url >htt p://ww. openengsb. org</url >
<li censes>
<license>
<nanme>Apache 2</nane>

<url >http://ww. apache. org/licenses/LI CENSE-2. 0. txt</url >

<di stri bution>repo</distribution>
</license>
</licenses>
<scnp

<connection>scmgit:git://github. conf openengsbh/ openengsb. gi t </ connecti on>

<devel oper Connection>scmgit:git@ithub. com openengsb/ openengsb. gi t </ devel oper Connecti on>

<url >http://github. com openengsb/ openengsb</url >
</ scnp

71

Writing Code

31.2. Using the same dependencies as the OPENENGSB

To use the same dependencies as the OPENENGSB project you have to import the shared-plugin-
settings project into your dependency management section:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. openengshb. bui | d</ gr oupl d>
<artifactld>shared-plugin-settings</artifactld>
<ver si on>Ver si on of OPENENGSB you use</versi on>
<t ype>ponx/type>
<scope>i nmport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

This will import all the dependencies with the correct versions into the dependencyManagement
section. Y ou can now define the dependencies shared between your project and OPENENGSB in your
dependencies section without setting the version.

72

Chapter 32. Recommended Eclipse Plug-ins for
Developers

The following plug-ins for Eclipse are recommended for the development of the OpenEngSB. If not
otherwise stated we recommend the latest stable version of the plug-ins. For information about the
basic setup of this plug-ins please take a look into the corresponding plug-in documentation. This
section only gives hints for setup if it is OpenEngSB specific.

32.1. Properties Editor

The properties editor can be used to edit the properties files used for internationalization and
automatically escapes special characters, like the German "".

32.2. Spring IDE

Spring IDE adds support for the Spring Framework to the Eclipse platform. Especially editing the
XML configuration files becomes a lot easier, as this plug-in provides code completion and other
useful features.

32.3. Eclipse CS

The checkstyle plugin integrates checkstyle into Eclipse. Conformance with checkstyle criteria has to
be checked before each push to the repository, so integrating the check into the IDE helps developers
to already conform to the checkstyle criteria during development. Y ou have to configure the plug-in
to use our checkstyle configuration file, which can be found here and at /tooling/checkstyle/src/main/
resources/checkstyle.xml starting from the root directory of the OpenEngSB.

32.4. Drools

The Drools plug-in is handy if you want to edit workflows or Drools rules, because it provides syntax
highlighting for rules and a graphical editor for workflows.

73

http://marketplace.eclipse.org/content/properties-editor-0
http://marketplace.eclipse.org/content/spring-ide
http://marketplace.eclipse.org/content/checkstyle-plug
https://github.com/openengsb/openengsb/blob/openengsb-1.1.0.RC1/tooling/checkstyle/src/main/resources/checkstyle.xml
http://marketplace.eclipse.org/content/jboss-drools

Chapter 33. Writing Documentation

This chapter isintended for developers who write documentation. There are no special prerequisites.
Part one describes how achapter should be structured. Part two discusses how domains and connectors
should be document. Part three describes how Docbook is used at OpenEngSB.

33.1. General Documentation Guidelines

A chapter should consist of these parts:

Introduction
It should explained who the target audience for this chapter isand in what case this chapter should
be read. There should also be a basic summary of what this chapter is about.

Prerequisites
Any prerequisites should belisted. Link to the appropriate chapter or to awebsiteto givethe reader
agood starting point in case they need to learn something elsefirst.

Context
In the context section the reader should learn in which context this chapter is applicable. If
necessary abbrevations and acronyms used in this chapter can be explained here.

Content
The actual content of this chapter. This should be structured in as many sections as appropriate.

Example
If possible there should be an example to illustrate the points of the chapter.

Common Problems
If there are some known pitfalls or bugs they should be described in this section.

Closing Remarks
In this section the content of the chapter can be summarized once more. The reader should get
information on what to do next.

It is not necessary that every part is adocbook section. Parts can be combined if it seems appropriate.

33.2. Document a domain or connector

33.2.1. Domain

Each domain getstheir own directory in the user guide at donai ns/ <t he- domai n- name>. The domain-
specific documentation should be put in a file named donai n. xm . The directory will be used to
document connectors for the domain.

The documentation of adomain should at |east consist of the following parts:

Description
Describe briefly what the purpose of the Domainis.

74

Writing Documentation

Functional interface
Thelink to the actual javainterface (and any domain models used in the interface) at Github. The
domain interface and model s should have enough Javadoc to explain the usage.

Events

If the domain adds new events to the OpenEngSB, the link to the events package at Github should
be provided. The meaning of each events should be documented through the Javadoc at the actual

class.

33.2.2. Connector

A connector for a specific domain should be documented in the domain-specific directory. Add anew
file with the unigue name of the connector.

The documentation of a connector should at least conisst of the following parts:

Description

Provide a description of the external tool and its purpose.

External tool configuration
A section on how to configure the actual external tool for usage with the OpenEngSB has to be

provided.

Support for domain interface
Any deviation to the provided functionality of the domain should be documented. E.g a connector
may only implement parts of the domain interface.

33.3. Using Dochbook

Thisis not a DocBook manual but rather an explanation what type of docbook tags are used in this
documentation. If you are new to DocBook you should read DocBook 5: The Definitive Guide.

33.3.1. Tags

DocBook has many tagsto choose from. Thislist describes which tags should be used in which cases.

Tag

<command>

<envar>

<emphasis>

<filename>

<guibutton>

Description

Used for executables

Used for environment variables

Used to emphasize words in a sentence

Used for files and directories

Used to describe buttonsin a GUI

Example

Type <command>Is</command> to get the
contents of the directory.

PATH

This chapter explains only the very basi cs of
Git.

You can set environment variables in
<filename>~/.profile</filename>.

Press <guibutton>Next</guibutton> to
continue with the process.

75

http://www.docbook.org/tdg5/en/html/docbook.html

Writing Documentation

Tag
<guilabel>

<guimenu>

<itemizedlist>

<listitem>

<option>

<orderedlist>

<para>

<replaceable>

<link>

<xref>

<userinput>

<warning>

Description

Used to describe labelsin a GUI

Used to describe menusin a GUI

Used for bullet typelists

Used for entriesin alist

Used for options of commands

Used for numbered lists

Used for paragraphs

<programlisting> Used to display code (e.g. XML or
Java). Generally it is a good idea to
wrap the contents of this tag in a

CDATA section.

Used for placeholdersin examples

Used for links to external resources

Used for internal links

Used for data which is entered by the

user

Used for warnings about a chapter

33.3.1.1. Including an image

Images can be included in this way:

<medi aobj ect >

Example

Select <guilabel>Copy projects into
workspace</guilabel >

Go to <guimenu>File</guimenu>,
<guimenu>Import...</guimenu>.

<itemizedlist><listitem>0One</
listitem><listitem>Two</listitem></
itemizedlist>

<itemizedlist><listitem>0One</
listitem><listitem>Two</listitem></
itemizedlist>

<command>mvn</command>
<option>clean</option> is used to clean the
project.

<orderedlist><listitem>0One</
listitem><listitem>Two</listitem></
orderedlist>

<para>Thisis a paragraph.</para>

<programlisting><!
[CDATA[System.out.printin("Hello,
world!");]]<</programlisting>

Type <command> <replaceable>/path/to/
maven</repl aceable>

You should read <link xlink:href="http://
www.dochbook.org/tdgs/en/html/
docbook.html">DocBook 5: The Definitive
Guide</link>.

This inserts a link to the description
of the the OpenEngSB <xref
linkend="architecture" />.

Type <userinput>n</userinput> to
overwrite the default values.

<warning><para>This chapter is out of
date.</para></warning>

76

Writing Documentation

<i mageobj ect >

<i magedata i d="new' fileref="graphics/testclient_nessage. png"
format ="png" wi dt h="400" align="center" />
</ i mageobj ect >

<capt i on>Messagi ng</ capti on>
</ medi aobj ect >

33.3.1.2. Using a table

There are two types of tables. Normal tables (<table>) and informal tables (<informaltable>)which
don't have a caption. Using informal tables should be fine most of the time. Example:

<i nformal t abl e>
<col gr oup>
<col wi dth="50" />
<col wi dth="100" />
</ col gr oup>
<t head>
<tr>
<t d>
Name
</td>
<t d>
Descri ption
</td>
</[tr>
</t head>
<t body>
<tr>
<t d>
tabl e
</td>
<t d>
Atable with a caption
</td>
</tr>
<tr>
<t d>
informal t abl e
</td>
<t d>
A table without a caption
</td>
</[tr>
</t body>
</informal tabl e>

33.3.1.3. Generating the documentation

To build the documentation maven with some pluginsisused. The full documentation can be generated
in one simple step:

cd docs

mvnclean install -Pdocs

The documentation can be found in docs/ t ar get / docbkx in HTML and PDF format.

77

	OpenEngSB Manual
	Table of Contents
	Part I. Introduction
	Chapter 1. How to read the Manual
	Chapter 2. What is the Open Engineering Service Bus
	Chapter 3. When to use the OpenEngSB
	3.1. The OpenEngSB as Base Environment
	3.2. Reusing integration Components and Workflows
	3.3. Management Environment
	3.4. Simple Development and Distribution Management
	3.5. Simple Plug-Ins and Extensions

	Part II. Tutorials
	Chapter 4. HowTo - Create a connector for an already existing domain for the OpenEngSB
	4.1. Goal
	4.2. Time to Complete
	4.3. Prerequisites
	4.4. Step 1 - Use the archetype
	4.5. Step 2 - Add the dependencies
	4.6. Step 3 - Configure the connector
	4.7. Step 4 - Implement the connector
	4.8. Step 5 - Spring Setup and Internationalization
	4.9. Step 6 - Start the OpenEngSB with your Connector
	4.10. Step 7 - Test the new connector

	Part III. OpenEngSB Framework
	Chapter 5. Quickstart
	5.1. Writing new projects using the OpenEngSB
	5.2. Writing Domains for the OpenEngSB
	5.3. Writing Connectors for the OpenEngSB

	Chapter 6. Architecture of the OpenEngSB
	6.1. OpenEngSB Enterprise Service Bus (ESB)
	6.2. OpenEngSB Infrastructure
	6.3. OpenEngSB Components
	6.4. OpenEngSB Tool Domains
	6.5. Client Tools (Service Consumer)
	6.6. Domain Tools (Service Provider)
	6.7. Domain- and Client Tool Connectors

	Chapter 7. Context Management
	Chapter 8. Persistence in the OpenEngSB
	Chapter 9. Security in the OpenEngSB
	9.1. Usermanagement
	9.2. Access control
	9.3. Authentication

	Chapter 10. Workflows
	10.1. Workflow service
	10.2. Rulemanager
	10.3. Processes

	Chapter 11. Taskbox
	11.1. Core Functionality
	11.2. UI Functionality

	Chapter 12. External Domains and Connectors
	12.1. Proxying
	12.1.1. Proxying internal Connector calls

	12.2. Using JMS proxying
	12.2.1. Proxying internal Connector calls
	12.2.2. Calling internal Services
	12.2.3. Examples
	12.2.3.1. Connect With Python
	12.2.3.2. Connect With CSharp
	12.2.3.3. Connect With Perl

	Chapter 13. OpenEngSB Platform

	Part IV. OpenEngSB Available Domains & Connectors
	Chapter 14. Notification Domain
	14.1. Description
	14.2. Functional Interface
	14.3. Connectors
	14.3.1. Email Connector
	14.3.1.1. External Tool Configuration

	Chapter 15. SCM Domain
	15.1. Description
	15.2. Functional Interface
	15.3. Connectors
	15.3.1. Git Connector
	15.3.1.1. External Tool Configuration

	Chapter 16. Issue Domain
	16.1. Description
	16.2. Functional Interface
	16.3. Connectors
	16.3.1. Trac Connector
	16.3.1.1. External Tool Configuration

	16.3.2. Jira Connector
	16.3.2.1. External Tool Configuration

	Chapter 17. Report Domain
	17.1. Description
	17.2. Functional Interface
	17.3. Connectors
	17.3.1. Plaintext Report Connector
	17.3.1.1. External Tool Configuration

	Chapter 18. Build Domain
	18.1. Description
	18.2. Functional Interface
	18.3. Connectors

	Chapter 19. Test Domain
	19.1. Description
	19.2. Functional Interface
	19.3. Connectors

	Chapter 20. Deploy Domain
	20.1. Description
	20.2. Functional Interface
	20.3. Connectors

	Chapter 21. Auditing Domain
	21.1. Description
	21.2. Functional Interface
	21.3. Connectors
	21.3.1. Memory Auditing Connector

	Chapter 22. Multi-Domain Connectors
	22.1. Connectors
	22.1.1. Maven Connector
	22.1.1.1. External Tool Configuration

	Part V. OpenEngSB Commiters & Contributors
	Chapter 23. Getting Started as a Developer
	23.1. Getting comfortable with the infrastructure
	23.1.1. Mailing Lists
	23.1.2. Jira Issue Tracker
	23.1.3. Code Repository
	23.1.4. Maven Repository
	23.1.5. Build Server

	23.2. Prerequisites
	23.2.1. Installing Git
	23.2.2. Installing Maven

	23.3. Starting OpenEngSB
	23.4. Using Eclipse
	23.5. Using Other IDEs than Eclipse
	23.6. Git Documentation
	23.6.1. Usage
	23.6.2. Github
	23.6.3. Starting up and configure
	23.6.4. Contributor Workflow
	23.6.5. Commiter Workflow
	23.6.6. Additional Rules

	23.7. Useful Tools
	23.7.1. openengsb-maven-plugin
	23.7.1.1. Goals

	Chapter 24. How To Create an Internal Connector
	24.1. Prerequisites
	24.2. Creating a new connector project
	24.2.1. Using the Maven Archetype
	24.2.2. Using the openengsb-maven-plugin:genConnector

	24.3. Project Structure
	24.4. Integrating the Connector into the OpenEngSB environment

	Chapter 25. How To Create an Internal Domain
	25.1. Prerequisites
	25.2. Creating a new domain project
	25.2.1. Using the Maven Archetype
	25.2.2. Using openengsb-maven-plugin:genDomain
	25.2.3. Project structure

	25.3. Components
	25.4. Connectors

	Chapter 26. Prepare and use Non-OSGi Artifacts
	26.1. Create Wrapped Artifacts
	26.2. Tips and Tricks

	Chapter 27. Release and Release Process
	27.1. Releases and the OpenEngSB
	27.2. Git Branches
	27.2.1. New Feature Workflow
	27.2.2. Milestone Releases
	27.2.3. Release Candidates
	27.2.4. Final and Support Releases

	27.3. Configure Maven
	27.4. Adapt Jira
	27.5. Perform the release
	27.6. Spread the News
	27.7. Prepare Changelog
	27.7.1. General Description
	27.7.2. Highlights
	27.7.3. Details

	Chapter 28. Admin
	28.1. Infrastructure
	28.1.1. OpenEngSB Infrastructure Server
	28.1.2. OpenEngSB Build
	28.1.3. OpenEngSB Issuetracker
	28.1.4. OpenEngSB git
	28.1.5. OpenEngSB Maven
	28.1.5.1. internal
	28.1.5.2. external

	28.1.6. OpenEngSB Mailinglist

	28.2. Logo Locations and Upgrade
	28.2.1. External Infrastructure
	28.2.2. Internal Management Application
	28.2.3. Documentation

	Chapter 29. Project Roles
	29.1. Users
	29.2. Contributors
	29.3. Commiters
	29.4. Project Comitee Members

	Chapter 30. Java Coding Style
	30.1. Sun Coding Guidelines
	30.1.1. Line length
	30.1.2. Wrapping
	30.1.3. Number of declarations per line
	30.1.4. Declaration placement
	30.1.5. Blank lines

	30.2. General
	30.2.1. File format
	30.2.2. Header
	30.2.3. Duplication
	30.2.4. Use guards
	30.2.5. Keep methods short
	30.2.6. Use enums
	30.2.7. Avoid use of static members
	30.2.8. Use fully qualified imports
	30.2.9. Never declare implementation types
	30.2.10. SerialVersionUID
	30.2.11. Restrict scope of suppressed warnings
	30.2.12. Use String.format()
	30.2.13. Array declaration style
	30.2.14. Comments

	30.3. Naming
	30.3.1. Interfaces
	30.3.2. Don't abbreviate

	30.4. No clutter
	30.5. Exception Handling
	30.6. Tests
	30.6.1. General
	30.6.2. Naming Scheme

	30.7. XML Formatting
	30.7.1. File Format
	30.7.2. Eclipse Settings
	30.7.3. Recommended Readings

	Chapter 31. Writing Code
	31.1. Maven POM files in the OpenEngSB
	31.2. Using the same dependencies as the OPENENGSB

	Chapter 32. Recommended Eclipse Plug-ins for Developers
	32.1. Properties Editor
	32.2. Spring IDE
	32.3. Eclipse CS
	32.4. Drools

	Chapter 33. Writing Documentation
	33.1. General Documentation Guidelines
	33.2. Document a domain or connector
	33.2.1. Domain
	33.2.2. Connector

	33.3. Using Docbook
	33.3.1. Tags
	33.3.1.1. Including an image
	33.3.1.2. Using a table
	33.3.1.3. Generating the documentation

