
OpenEngSB Manual
1.2.0.M4 "Obedient Overmind"

ii

Table of Contents

I. Introduction .. 1

1. How to read the Manual ... 2

2. What is the Open Engineering Service Bus .. 3

3. When to use the OpenEngSB .. 4

3.1. The OpenEngSB as Base Environment ... 4

3.2. Reusing integration Components and Workflows ... 4

3.3. Management Environment ... 4

3.4. Simple Development and Distribution Management ... 4

3.5. Simple Plug-Ins and Extensions ... 4

II. Tutorials ... 5

4. HowTo - Create a connector for an already existing domain for the OpenEngSB 6

4.1. Goal ... 6

4.2. Time to Complete ... 6

4.3. Prerequisites .. 6

4.4. Step 1 - Use the archetype ... 6

4.5. Step 2 - Add the dependencies ... 8

4.6. Step 3 - Configure the connector .. 8

4.7. Step 4 - Implement the connector ... 8

4.8. Step 5 - Spring Setup and Internationalization ... 12

4.9. Step 6 - Start the OpenEngSB with your Connector ... 13

4.10. Step 7 - Test the new connector ... 13

5. HowTo - Interact with the OPENENGSB Remotely ... 14

5.1. Using JMS proxying .. 14

III. OpenEngSB Framework ... 18

6. Quickstart .. 19

6.1. Writing new projects using the OpenEngSB .. 19

6.2. Writing Domains for the OpenEngSB ... 19

6.3. Writing Connectors for the OpenEngSB .. 19

7. Architecture of the OpenEngSB .. 21

7.1. OpenEngSB Enterprise Service Bus (ESB) .. 21

7.2. OpenEngSB Infrastructure .. 22

7.3. OpenEngSB Components ... 22

7.4. OpenEngSB Tool Domains .. 22

7.5. Client Tools (Service Consumer) .. 22

7.6. Domain Tools (Service Provider) .. 22

7.7. Domain- and Client Tool Connectors .. 23

8. Context Management .. 24

8.1. Wiring services ... 24

9. Persistence in the OpenEngSB .. 26

10. Security in the OpenEngSB .. 27

10.1. Usermanagement ... 27

10.2. Access control ... 27

10.3. Authentication ... 28

11. Workflows ... 29

11.1. Workflow service .. 29

OpenEngSB Manual

iii

11.2. Rulemanager .. 29

11.3. Processes ... 29

12. Taskbox ... 30

12.1. Core Functionality ... 30

12.2. UI Functionality .. 30

13. External Domains and Connectors ... 31

13.1. Proxying .. 31

14. Deployer services ... 32

14.1. Connector configuration ... 32

15. OpenEngSB Platform .. 33

IV. OpenEngSB Available Domains & Connectors .. 34

16. Notification Domain ... 35

16.1. Description .. 35

16.2. Functional Interface ... 35

16.3. Connectors .. 35

17. SCM Domain ... 36

17.1. Description .. 36

17.2. Functional Interface ... 36

17.3. Connectors .. 36

18. Issue Domain ... 37

18.1. Description .. 37

18.2. Functional Interface ... 37

18.3. Connectors .. 37

19. Report Domain ... 38

19.1. Description .. 38

19.2. Functional Interface ... 38

19.3. Connectors .. 38

20. Build Domain ... 39

20.1. Description .. 39

20.2. Functional Interface ... 39

20.3. Connectors .. 39

21. Test Domain .. 40

21.1. Description .. 40

21.2. Functional Interface ... 40

21.3. Connectors .. 40

22. Deploy Domain .. 41

22.1. Description .. 41

22.2. Functional Interface ... 41

22.3. Connectors .. 41

23. Auditing Domain .. 42

23.1. Description .. 42

23.2. Functional Interface ... 42

23.3. Connectors .. 42

24. Appointment Domain .. 43

24.1. Description .. 43

24.2. Functional Interface ... 43

25. Contact Domain ... 44

OpenEngSB Manual

iv

25.1. Description .. 44

25.2. Functional Interface ... 44

26. Multi-Domain Connectors ... 45

26.1. Connectors .. 45

V. OpenEngSB Commiters & Contributors .. 46

27. Getting Started as a Developer .. 47

27.1. Getting comfortable with the infrastructure .. 47

27.2. Prerequisites .. 48

27.3. Starting OpenEngSB .. 48

27.4. Using Eclipse .. 49

27.5. Using Other IDEs than Eclipse ... 49

27.6. Git Documentation ... 49

27.7. Useful Tools .. 51

28. How To Create an Internal Connector ... 56

28.1. Prerequisites .. 56

28.2. Creating a new connector project .. 56

28.3. Project Structure .. 57

28.4. Integrating the Connector into the OpenEngSB environment 58

29. How To Create an Internal Domain ... 59

29.1. Prerequisites .. 59

29.2. Creating a new domain project ... 59

29.3. Components ... 61

29.4. Connectors .. 62

30. Prepare and use Non-OSGi Artifacts ... 63

30.1. Create Wrapped Artifacts ... 63

30.2. Tips and Tricks ... 64

31. Release and Release Process ... 65

31.1. Releases and the OpenEngSB ... 65

31.2. Git Branches ... 66

31.3. Configure Maven ... 66

31.4. Adapt Jira ... 67

31.5. Perform the release .. 68

31.6. Spread the News .. 68

31.7. Prepare Changelog ... 69

32. Admin .. 70

32.1. Infrastructure ... 70

32.2. Logo Locations and Upgrade .. 71

33. Project Roles .. 73

33.1. Users ... 73

33.2. Contributors ... 73

33.3. Commiters ... 73

33.4. Project Comitee Members .. 73

34. Java Coding Style .. 74

34.1. Sun Coding Guidelines .. 74

34.2. General ... 74

34.3. Naming ... 77

34.4. No clutter .. 77

OpenEngSB Manual

v

34.5. Exception Handling ... 77

34.6. Tests ... 78

34.7. XML Formatting ... 78

35. Writing Code ... 80

35.1. Maven POM files in the OpenEngSB .. 80

35.2. Using the same dependencies as the OPENENGSB .. 81

35.3. Making UI Tests Localizable .. 81

35.4. How to write tests ... 81

36. Recommended Eclipse Plug-ins for Developers .. 83

36.1. Properties Editor .. 83

36.2. Spring IDE .. 83

36.3. Eclipse CS .. 83

36.4. Drools ... 83

37. Writing Documentation ... 84

37.1. General Documentation Guidelines ... 84

37.2. Document a domain or connector ... 84

37.3. Using Docbook .. 85

1

Part I. Introduction
This parts provides general information to the project, the document, changelog and similar data which fits neither

in the framework description nor in the contributor section.

The target audience of this part are developers, contributors and managers.

2

Chapter 1. How to read the Manual

Like any open source project we have the problem that writing documentation is a pain and nobody

is paid for doing it. In combination with the rapidly changing OpenEngSB source base this will lead

to a huge mess within shortest time. To avoid this problem we've introduced regular documentation

reviews and, more importantly, the following rules which apply both for writing the document and

for reading it.

• The manual is written as short and precise as possible (less text means lesser to read and even lesser

to review)

• The manual does not describe how to use an interface but only coarse grained concepts in the

OpenEngSB. Since the OpenEngSB is not an end user application, but rather a framework for

developers we expect that Javadoc is no problem for them. Writing Javadoc and keep it up to date

is still hard for developers, but much easier than maintaining an external document. Therefore, all

concepts are explained and linked directly to the very well documented interfaces in the OpenEngSB

on Github. To fully understand and use them you'll have to read this manual parallel to the interface

documentation in the source code.

3

Chapter 2. What is the Open Engineering Service
Bus

In engineering environments a lot of different tools are used. Most of these operate on the same domain,

but often interoperability is the limiting factor. For each new project and team member tool integration

has to be repeated again. In general, this ends up with numerous point-to-point connectors between

tools which are neither stable solutions nor flexible ones.

This is where the Open (Software) Engineering Service Bus (OpenEngSB) comes into play. It

simplifies design and implementation of workflows in an engineering team. The engineering team itself

(or a process administrator) is able to design workflows between different tools. The entire description

process happens on the layer of generic domains instead of specific tool properties. This provides an

out of the box solution which allows typical engineering teams to optimize their processes and make

their workflows very flexible and easy to change. Also, OpenEngSB simplifies the replacement of

individual tools and allows interdepartmental tool integration.

Project management is set to a new level since its possible to clearly guard all integrated tools and

workflows. This offers new ways in notifying managers at the right moment and furthermore allows

a very general, distanced and objective view on a project.

Although this concept is very powerful it cannot solve every problem. The OpenEngSB is not designed

as a general graphical layer over an Enterprise Service Bus (ESB) which allows you to design ALL of

your processes out of the box. As long as you work in the designed domains of the OpenEngSB you

have a lot of graphical support and other tools available making your work extremely easy. But when

leaving the common engineering domains you also leave the core scope of the service bus. OpenEngSB

still allows you to connect your own integration projects, use services and react on events, but you have

to keep in mind that you're working outside the OpenEngSB and "falling back" to classical Enterprise

Application Integration (EAI) patterns and tools.

However, this project does not try to reinvent the wheel. OpenEngSB will not replace the tools

already used for your development process, it will integrate them. Our service bus is used to connect

the different tools and design a workflow between them, but not to replace them with yet another

application. For example, software engineers like us love their tools and will fight desperately if you

try to take them away. We like the wheels as they are, but we do not like the way they are put together

at the moment.

4

Chapter 3. When to use the OpenEngSB

The OpenEngSB project has several direct purposes which should be explained within this chapter to

make clear in which situations the OpenEngSB can be useful for you.

3.1. The OpenEngSB as Base Environment

OSGi is a very popular integration environment. Instead of delivering one big product the products get

separated into minor parts and deployed within a general envioronment. The problem with this concept

is to get old, well known concepts up and running in the new environment. In addition tools such as

PAX construct allow a better integration into Apache Maven, and extended OSGi runtimes, such as

Karaf allow a richer and easier development. Neverthless, settting up such a system for development

means a lot of hard manual work. Using the OpenEngSB such systems can be setup within minutes.

3.2. Reusing integration Components and Workflows

The OpenEngSB introduces a new level of ESB. Development with all typical ESBs mean to start

from the ground and develop a complete, own environment, only using existing connectors. Using the

OpenEngSB not only connectors but an entire integrated process, workflow and event environment

waits for you. In addition connectors to different tools can not only be adapted to the specific needs,

but also simply replaced by other connectors, using the Domain concept.

3.3. Management Environment

The OpenEngSB delivers a complete management and monitoring environment. While this

environment can be added to your project standalone (similar to e.g. Tomcat management console)

you also have the possibility to completely integrate the OpenEngSB management enviornment into

your Apache Wicket application.

3.4. Simple Development and Distribution Management

While typical ESB have to be installed seperately from your application the OpenEngSB is delivered

with your application. Develop your application in the OpenEngSB environment and scripts to embed

your application into the OpenEngSB are provided. In addition easy blending allows to adapt the

OpenEngSB visually to your needs and cooperate design.

3.5. Simple Plug-Ins and Extensions

The OpenEngSB provides the infrastructure for a rich Plug-In and extension system. Using maven

archetypes Plug-Ins can be created, uploaded and provided to all other OpenEngSB installations or

applications using the OpenEngSB.

5

Part II. Tutorials
This part contains tutorials for the OpenEngSB.

6

Chapter 4. HowTo - Create a connector for an
already existing domain for the OpenEngSB

4.1. Goal

This tutorial describes examplary for all connectors the implementation of an email connector. The

email connector implements the interface of the Chapter 16, Notification Domain, which is already

implemented in the OpenEngSB. Therefore, this tutorial describes the implementation of a connector

for an already present domain.

4.2. Time to Complete

If you are already familiar with the OpenEngSB about 30 minutes. If you are not familiar with the

OpenEngSB please read this manual from the start or check the homepage for further information.

4.3. Prerequisites

Warning: This section is likely to change in the near future, as domains and connectors are currently

separated from the rest of the OpenEngSB project. Currently connectors are developed together with

the core system.

For information about how to get started as contributor to the OpenEngSB project and how to get the

current OpenEngSB source please read the contributor section of the manual: Part V, “OpenEngSB

Commiters & Contributors”.

4.4. Step 1 - Use the archetype

As the development of a connector is a recurring task the OpenEngSB developer team has prepared

Maven archetypes and useful mojos, which provide support for the initial creation of a connector. A

new connector can be created by invoking mvn openengsb:genConnector (or using /etc/scripts/

gen-connector.sh)

Go into the directory "/connector" and invoke the mojo from there. It generates the result in the

directory from where it is started, therefore it is recommended to run it from the "/connector" directory.

You can also run it from a different directory and copy the results into the "/connector" directory. Fill

in the following values (if no input is provided the default value is kept):

Domain Name (is domainname): notification

Domain Interface (is NotificationDomain):

Connector Name: email

Version (is 1.1.0-SNAPSHOT):

Project Name (is OpenEngSB :: Connector :: Email):

Now the maven archetype is executed. It asks you to confirm the configuration:

groupId: org.openengsb.connector

artifactId: openengsb-connector-email

http://www.openengsb.org

HowTo - Create a connector for an already

existing domain for the OpenEngSB

7

version: 1.1.0-SNAPSHOT

package: org.openengsb.connector.email

connectorName: Email

connectorNameLC: email

domainArtifactId: openengsb-domain-notification

domainInterface: NotificationDomain

domainPackage: org.openengsb.domain.notification

name: OpenEngSB :: Connector :: Email

 Y: : y

A project named "email" is created with the following structure:

email

|

|---pom.xml

|

|---src

 |

 |---main

 |

 |---java

 | |

 | |---org

 | |

 | |---openengsb

 | |

 | |---connector

 | |

 | |---email

 | |

 | |---EmailServiceManager.java

 | |

 | |---internal

 | |

 | |---EmailServiceImpl.java

 | |

 | |---EmailServiceInstanceFactory.java

 |

 |---resources

 |

 |---META-INF

 | |

 | |---spring

 | |

 | |---email-context.xml

 |

 |---OSGI-INF

 |

 |---l10n

 |

 |---bundle.properties

 |

 |---bundle_de.properties

All these artifacts will be covered during the implementation of the connector and explained in step

2 of this tutorial.

HowTo - Create a connector for an already

existing domain for the OpenEngSB

8

4.5. Step 2 - Add the dependencies

Let's start with the dependencies. As the email connector will be based upon the javax mail libraries,

we need to include dependencies for the OSGI versions of these artifacts into the pom file located at

"/provision/pom.xml". So we add this dependency to the dependencies section:

 <dependency>

 <groupId>org.apache.servicemix.bundles</groupId>

 <artifactId>org.apache.servicemix.bundles.javax.mail</artifactId>

 <version>1.4.1_3</version>

</dependency>

4.6. Step 3 - Configure the connector

To configure the connector as part of the OpenEngSB two more things are necessary. At first we

have to add the connector to the modules section of its parent pom if it is not already present there.

If you have run openengsb:genConnector in the "connector" directory this step should have already

been performed automatically for you. To check or manually add the entry, open the file "/connector/

pom.xml" and add the new connector to the modules section:

 ...

<modules>

 <module>email</module>

...

</modules>

...

The second step is necessary to configure Karaf correctly. Please open the file "/assembly/pom.xml"

and add the following line:

 ...

<profile>

 <id>release</id>

 ...

 <deployURLs>

 ...

 scan-bundle:mvn:org.openengsb.connector/openengsb-connector-email/1.2.0.M4,

 ...

 </deployURLs>

...

4.7. Step 4 - Implement the connector

Now you can run the following command in the root folder of the OpenEngSB to create an eclipse

project for the new connector:

mvn openengsb:eclipse

HowTo - Create a connector for an already

existing domain for the OpenEngSB

9

Now import the connector project into Eclipse and implement the email service by implementing the

classes EmailServiceImpl.java and EmailServiceInstanceFactory.java. We won't go into detail about

the actual mail implementation here, so we encapsulated the mailing functionality in a mail abstraction.

While the class EmailServiceImpl is responsible for the realization of the domain interface, the factory

is responsible for creating instances of the email service and for publishing the meta data necessary to

configure an instance of the email service. These two classes are now explained in detail.

package org.openengsb.connector.email.internal;

import org.openengsb.connector.email.internal.abstraction.MailAbstraction;

import org.openengsb.connector.email.internal.abstraction.MailProperties;

import org.openengsb.core.common.util.AliveState;

import org.openengsb.domain.notification.NotificationDomain;

import org.openengsb.domain.notification.model.Notification;

import org.osgi.framework.ServiceRegistration;

public class EmailServiceImpl implements NotificationDomain {

 private final String id;

 private final MailAbstraction mailAbstraction;

 private ServiceRegistration serviceRegistration;

 private final MailProperties properties;

 public EmailServiceImpl(String id, MailAbstraction mailAbstraction) {

 this.id = id;

 this.mailAbstraction = mailAbstraction;

 properties = mailAbstraction.createMailProperties();

 }

 /**

 * Perform the given notification, which defines message, recipient, subject and

 * attachments.

 */

 @Override

 public void notify(Notification notification) {

 mailAbstraction.send(properties, notification.getSubject(), notification

 .getMessage(), notification.getRecipient());

 }

 /**

 * return the current state of the service,

 *

 * @see org.openengsb.core.common.AliveState

 */

 @Override

 public AliveState getAliveState() {

 AliveState aliveState = mailAbstraction.getAliveState();

 if (aliveState == null) {

 return AliveState.OFFLINE;

 }

 return aliveState;

 }

 public String getId() {

 return id;

 }

 public ServiceRegistration getServiceRegistration() {

 return serviceRegistration;

 }

HowTo - Create a connector for an already

existing domain for the OpenEngSB

10

 public void setServiceRegistration(ServiceRegistration serviceRegistration) {

 this.serviceRegistration = serviceRegistration;

 }

 public MailProperties getProperties() {

 return properties;

 }

}

As you can see, without the mail specific stuff the implementation is quite straight forward. Simply

implement the domain interface as well as the getAliveState() method, which is used to query to current

status of a tool.

package org.openengsb.connector.email.internal;

import java.util.HashMap;

import java.util.Map;

import org.openengsb.connector.email.internal.abstraction.MailAbstraction;

import org.openengsb.core.common.ServiceInstanceFactory;

import org.openengsb.core.common.descriptor.AttributeDefinition;

import org.openengsb.core.common.descriptor.ServiceDescriptor;

import org.openengsb.core.common.validation.MultipleAttributeValidationResult;

import org.openengsb.core.common.validation.MultipleAttributeValidationResultImpl;

import org.openengsb.domain.notification.NotificationDomain;

public class EmailServiceInstanceFactory implements

 ServiceInstanceFactory<NotificationDomain, EmailServiceImpl> {

 private final MailAbstraction mailAbstraction;

 public EmailServiceInstanceFactory(MailAbstraction mailAbstraction) {

 this.mailAbstraction = mailAbstraction;

 }

 private void setAttributesOnNotifier(Map<String, String> attributes,

 EmailServiceImpl notifier) {

 if (attributes.containsKey("user")) {

 notifier.getProperties().setUser(attributes.get("user"));

 }

 if (attributes.containsKey("password")) {

 notifier.getProperties().setPassword(attributes.get("password"));

 }

 if (attributes.containsKey("prefix")) {

 notifier.getProperties().setPrefix(attributes.get("prefix"));

 }

 if (attributes.containsKey("smtpAuth")) {

 notifier.getProperties().setSmtpAuth(Boolean.parseBoolean(attributes.

 get("smtpAuth")));

 }

 if (attributes.containsKey("smtpSender")) {

 notifier.getProperties().setSender(attributes.get("smtpSender"));

 }

 if (attributes.containsKey("smtpHost")) {

 notifier.getProperties().setSmtpHost(attributes.get("smtpHost"));

 }

 if (attributes.containsKey("smtpPort")) {

 notifier.getProperties().setSmtpPort(attributes.get("smtpPort"));

 }

HowTo - Create a connector for an already

existing domain for the OpenEngSB

11

 }

 /**

 * Called when the {@link #ServiceDescriptor} for the provided service is needed.

 *

 * The {@code builder} already has the id, service type and implementation type

 * set to defaults.

 */

 @Override

 public ServiceDescriptor getDescriptor(ServiceDescriptor.Builder builder) {

 builder.name("email.name").description("email.description");

 builder

 .attribute(buildAttribute(builder, "user", "username.outputMode",

 "username.outputMode.description"))

 .attribute(

 builder.newAttribute().id("password").name("password.outputMode")

 .description("password.outputMode.description").defaultValue("")

 .required().asPassword().build())

 .attribute(buildAttribute(builder, "prefix", "prefix.outputMode",

 "prefix.outputMode.description"))

 .attribute(

 builder.newAttribute().id("smtpAuth").name("mail.smtp.auth.outputMode")

 .description("mail.smtp.auth.outputMode.description")

 .defaultValue("false").asBoolean().build())

 .attribute(

 buildAttribute(builder, "smtpSender", "mail.smtp.sender.outputMode",

 "mail.smtp.sender.outputMode.description"))

 .attribute(

 buildAttribute(builder, "smtpPort", "mail.smtp.port.outputMode",

 "mail.smtp.port.outputMode.description"))

 .attribute(

 buildAttribute(builder, "smtpHost", "mail.smtp.host.outputMode",

 "mail.smtp.host.outputMode.description")).build();

 return builder.build();

 }

 private AttributeDefinition buildAttribute(ServiceDescriptor.Builder builder,

 String id, String nameId, String descriptionId) {

 return builder.newAttribute().id(id).name(nameId).description(descriptionId)

 .defaultValue("").required().build();

 }

 /**

 * Called by the {@link AbstractServiceManager} when updated service attributes for

 * an instance are available. The attributes may only contain changed values and

 * omit previously set attributes.

 *

 * @param instance the instance to update

 * @param attributes the new service settings

 */

 @Override

 public void updateServiceInstance(EmailServiceImpl instance, Map<String,

 String> attributes) {

 setAttributesOnNotifier(attributes, instance);

 }

 /**

 * The {@link AbstractServiceManager} calls this method each time a new service

 * instance has to be started.

 *

 * @param id the unique id this service has been assigned.

 * @param attributes the initial service settings

HowTo - Create a connector for an already

existing domain for the OpenEngSB

12

 */

 @Override

 public EmailServiceImpl createServiceInstance(String id,

 Map<String, String> attributes) {

 EmailServiceImpl notifier = new EmailServiceImpl(id, mailAbstraction);

 setAttributesOnNotifier(attributes, notifier);

 return notifier;

 }

 /**

 * Validates if the service is correct before updating.

 */

 @Override

 public MultipleAttributeValidationResult updateValidation(EmailServiceImpl instance,

 Map<String, String> attributes) {

 return new MultipleAttributeValidationResultImpl(true,

 new HashMap<String, String>());

 }

 /**

 * Validates if the attributes are correct before creation.

 */

 @Override

 public MultipleAttributeValidationResult createValidation(String id,

 Map<String, String> attributes) {

 return new MultipleAttributeValidationResultImpl(true,

 new HashMap<String, String>());

 }

}

The factory is more interesting with respect to the OpenEngSB. It is used to create and configure

instances of the email service. Furthermore it is responsible for publishing which properties a

mail notifier needs to be configured in a proper way. The "getDescriptor" method returns a

service descriptor, which is created with the help of a builder. This service descriptor contains

the properties a mail notifier needs. In this case things like user password, smtp server and so

on. The "updateServiceInstance" method updates an already created instance of the mail service.

Basically this means setting the properties, which are provided in the attributes map parameter (see

"setAttributesOnNotifier" method). The "createServiceInstance" method is responsible for the creation

of a new email service. The methods "updateValidation" and "createValidation" are used to check

properties before "updateServiceInstance" or "createServiceInstance" are called. As the mail service

does not want to check properties beforehand it simply returns that all values are OK.

4.8. Step 5 - Spring Setup and Internationalization

The Maven archetype already created the spring setup for the email service at src/main/resources/

META-INF/spring. If properties or constructor arguments are needed for the service factory, they have

to be defined in the spring setup here. In our case the mail abstraction has to be injected as constructor

argument on the creation of the email service factory.

With regards to internationalization it is necessary to add a name and a description for each property

used in the service descriptor (see email service factory). The properties files for English and German

are also already created by the Maven archetype and can be found at "src/main/resources/OSGI-INF/

l10n/". In our case the bundle.properties file contains the following entries:

HowTo - Create a connector for an already

existing domain for the OpenEngSB

13

email.name=Email Notification

email.description=This is a Email Notification Service

username.outputMode = Username

username.outputMode.description = Specifies the username of the email account

password.outputMode = Password

password.outputMode.description = Password of the specified user

prefix.outputMode = Prefix

prefix.outputMode.description = Subject prefix for all mails sent by this connector

mail.smtp.auth.outputMode = Authentification

mail.smtp.auth.outputMode.description = Specifies if the smtp authentication is on or off

mail.smtp.sender.outputMode = Sender Emailadress

mail.smtp.sender.outputMode.description = Specifies the Emailadress of the sender

mail.smtp.port.outputMode = SMTP Port

mail.smtp.port.outputMode.description = Specifies the Port for the smtp connection

mail.smtp.host.outputMode = SMTP Host

mail.smtp.host.outputMode.description = Specifies the SMTP Hostname

As you can see each property is defined with name and description. The same entries can be found in

the German properties file (bundle_de.properties) with German names and descriptions.

4.9. Step 6 - Start the OpenEngSB with your Connector

After implementing and testing your connector locally you can try to start up the OpenEngSB with

your new connector. Enter the following commands in the root directory of the OpenEngSB to build

and start the OpenEngSB in development mode:

mvn clean install

mvn openengsb:provision

Now you can enter "list" into the karaf console to check whether your new connector was installed

and started.

4.10. Step 7 - Test the new connector

Now you can use the OpenEngSB administration WebApp (available at http://localhost:8090/

openengsb) to test your new connector. For more information about how to use the WebApp see the

How-to section} of the the OpenEngSB homepage.

http://localhost:8090/openengsb
http://localhost:8090/openengsb
http://openengsb.org/howto/howto_logging.html
http://openengsb.org/howto/howto_logging.html

14

Chapter 5. HowTo - Interact with the OPENENGSB
Remotely

5.1. Using JMS proxying

The current JMS Connector allows for internal method calls being redirected via JMS as well as internal

services being called.

For resources regarding JMS please take a look at the according Wikipedia Page and for specific

language bindings take a look at ActiveMQ

5.1.1. Proxying internal Connector calls

Whenever now a method is sent through the JMS Port the call is marshalled and sent via JMS to a queue

named "receive"". The marshalling is done via JSON. The mapping has the parameters methodName,

args, classes, metadata and potentially answer and callId. methodName gives the name of the method

to call. Args are the serialised parameters of the method. classes are the types of the arguments. This

way it is easy to unmarshall the args into the appropriate classes. metadata is a simple Map which

stores key value pairs. answer can simply be yes or no and denotes if the methodcall wants an answer

to the call. callId gives the return queue the caller will listen to for an answer.

An answer can have the type, arg, className and metaData properties. type can be Object, Exception

or Void. arg is the serialised form of the return argument. className is the runtime class of the arg for

deserialisation. metadata is a simple key value store.

5.1.1.1. HowTo call an external service via proxies

This section will give a short introduction how to instantiate a proxy and call an external connector

First you have to go to the TestClient to instantiate a new Proxy. Select the Domain you want to have

proxied and click New Proxy for that Domain.

Testclient new proxy link

Then you have to set the correct values for the proxy properties. The Service Id is a unique value that

identifies the proxy in the OPENENGSB system. The Port Id defines to Port to be used for sending

the request. "jms-json" is a currently supported Port that sends the request via a json encoded JMS

message. The destination describes the endpoint the message should be sent to. When using jms-json

the domain and port of the JMS provider have to be set. When calling a remote connector the unique id

http://en.wikipedia.org/wiki/Java_Message_Service
http://activemq.apache.org/connectivity.html

HowTo - Interact with the OPENENGSB Remotely

15

of the remote service or connector has to be provided. This way the remote service can identify, load

and call a certain service. If the call is not intended to go to another OPENENGSB, or the external

service needs no identification of the service to call the remote service id can be ommited.

Create Proxy

After saving the proxy you should be able to test it via the TestClient page. Following is an example

of a call:

{"classes":["java.lang.String",

"java.lang.Integer","org.openengsb.core.ports.jms.JMSPortTest$TestClass"],

"methodName":"method","args":["123",5,{"test":"test"}], "metaData":{"test":"test"}

Test a proxy

When proxying connector calls you have to provide an answer to every call, as the system blocks until

it gets an answer. You have to send a JSON message containing a type string parameter, which can

be Object, Exception or Void depending on the return argument of the method, arg where you simply

serialise the Return Object, so it can be deserialised into the correct object later and className which

gives the exact class that has to be used for deserialisation. The request contains a parameter callId

which is the name of the queue the answer has to be sent to.

{"type":"Object","className":"org.openengsb.core.ports.jms.JMSPortTest$TestClass",

"metaData":{"test":"test"},"arg":{"test":"test"}}

Whenever a call to this proxy is then made a new JMS message will be sent to the "receive" queue on the

destination you entered. The exact make up of the message was already described. When implementing

an external connector it is best to test the call you want to receive first via the TestClient, so you get

the exact message that you will have to work with.

HowTo - Interact with the OPENENGSB Remotely

16

5.1.2. Calling internal Services

To call an internal Service send a methodcall as described before to the "receive" queue on the server

you want to call. The service works exactly as defined before. For example if you want to execute a

workflow via the WorkflowService send

{"callId":"12345","answer":true,"classes":["java.lang.String",

"org.openengsb.core.common.workflow.model.ProcessBag"],"

"methodName":"executeWorkflow","metaData":{"serviceId":"workflowService",

"contextId":"foo"},"args":["simpleFlow", {}]}

Please be aware that the flow the above method tries to call (simpleFlow) is not available by default

on the OpenEngSB. To make sure that there's a flow you can call install the flow in the OpenEngSB.

Therefore start the OpenEngSB and go to the SendEventPage. There choose to create a new process

and press new. Now enter simpleFlow as rulename and past the following rule:

<process xs:schemaLocation="http://drools.org/drools-5.0/process

 drools-processes-5.0.xsd" type="RuleFlow" name="simpleFlow" id="simpleFlow"

 package-name="org.openengsb" xmlns="http://drools.org/drools-5.0/process"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance">

 <header>

 <variables>

 <variable name="processBag">

 <type name="org.drools.process.core.datatype.impl.type.ObjectDataType"

 className="org.openengsb.core.common.workflow.model.ProcessBag"/>

 </variable>

 </variables>

 </header>

 <nodes>

 <start id="1" name="Start" x="16" y="16" width="91" height="48"/>

 <end id="2" name="End" x="21" y="168" width="80" height="40"/>

 <actionNode id="3" name="Action" x="21" y="96" width="80" height="40">

 <action type="expression" dialect="mvel">

 processBag.addProperty("test", 42);

 processBag.addProperty("alternativeName", "The answer to life the universe and everything");

 </action>

 </actionNode>

 </nodes>

 <connections>

 <connection from="3" to="2"/>

 <connection from="1" to="3"/>

 </connections>

</process>

After pressing save you can access the rule via the message shown above.

to the receive queue on the OPENENGSB JMS Port which is started by default on Port 6549. Make sure

that classes and args has the same number of arguments. If you just want an object to be instantiated,

but have no corresponding values that should be set for the object simply add {} (as in the example

above) which will instantiate the object but recognize, that no values have to be set on the object.

{"name" : "SomeName"} would on the other hand call the setName method with SomeName.

The response to the above message will be returned on a queue you've pasted via the callId field.

5.1.3. Examples

We provide examples in different languages how to connect to the OpenEngSB. The examples are

grouped according to language and the documentation to the different examples are directly done in

http://localhost:8090/openengsb/SendEventPage/

HowTo - Interact with the OPENENGSB Remotely

17

the code of the examples. We try to keep those examples as good as possible up-to-date, but do not

gurantee that they all work as expected since we can't add them to our integration tests. If you want to

provide examples in different languages you're always welcomed to provide them.

5.1.3.1. Connect With Python

To test the OPENENGSB JMS implementation with Python please follow the instructions

The example can be downloaded here

5.1.3.2. Connect With CSharp

The CSharp connector is written on basis of the Apache ActiveMQ JMS connector. There an EngSB.sln

file. This project file has been developed with SharpDevelop 4, but is also tested with VisualStudio

2008 CSharp Express Edition with the .Net Framework 4.

The example can be downloaded here

5.1.3.3. Connect With Perl

As shown in this example you can connect to the OpenEngSB in a similar way as with Python or

CSharp.

The example can be downloaded here

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/docs/examples/src/main/python/PythonClient.txt
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.2.0.M4/openengsb-docs-examples-1.2.0.M4-python.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.2.0.M4/openengsb-docs-examples-1.2.0.M4-csharp.zip
http://uk1.maven.org/maven2/org/openengsb/docs/openengsb-docs-examples/1.2.0.M4/openengsb-docs-examples-1.2.0.M4-perl.zip

18

Part III. OpenEngSB Framework
This part gives an introduction into the OpenEngSB project and explains its base usage environment and the

concepts, such as Domains, Connectors, Workflows and similar important ideas. Furthermore this part covers

installation, configuration and usage of the administration interface to implement a tool environment according

to your needs.

The target audience of this part are developers and contributors.

19

Chapter 6. Quickstart

As a developer you have basically two ways in which you can use the OpenEngSB. One option is to

use the OpenEngSB as a runtime environment for any project. In addition you've the possibility to

write Plug-Ins (Domains, Connectors, ...) for the OpenEngSB. Both cases are explained in this chapter.

6.1. Writing new projects using the OpenEngSB

TBW

6.2. Writing Domains for the OpenEngSB

To create a new Domain run mvn openengsb:genDomain (or use ../etc/scripts/gen-domain.sh)

in the domain folder. You will be asked for the name of your domain. Enter the domain name starting

with a lower case letter. For the other questions valid defaults are given.

The new domain project will be added as a submodule. You eventually want to run mvn

openengsb:eclipse and import the new project in eclipse.

Add the methods your domain supplies to the domain interface. If your domain raises any events add

methods like

void raiseEvent(YourEvent event);

(your event class subtype of Event as single parameter) to the events interface.

6.3. Writing Connectors for the OpenEngSB

To create a new Connector run mvn openengsb:genConnector (or use ../etc/scripts/gen-

connector.sh) in the connector folder. You will be asked for the name of the domain you want to

implement. Enter the domain name starting with a lower case letter. You may adapt the name of the

implemented domain interface if you it does not match the naming convention. Supply the name of

the connector staring with a lower case letter.

The new domain project will be added as a submodule. You eventually want to run mvn

openengsb:eclipse and import the new project in eclipse.

Implement the domain interface in the supplied class (unfortunately no method stubs are generated).

Unimplemented domain methods should always throw an exception rather than return

default value or do nothing. Therefore each domain method without body must throw

DomainMethodNotImplementedException to indicate that requested domain functionality is not

implemented.

@Override

public void foo() {

 throw new DomainMethodNotImplementedException();

}

Quickstart

20

The ServiceFactory has to supply a ServiceDescriptor that contains all attributes needed to instanciate

the Connector. In the methods createServiceInstance and updateServiceInstance use the provided

attributes to create a new new instance or update your Connector. The methods updateValidation

and createValidation should do the same but try to validate the provided attributes first and return a

validation result.

The generated ServiceManager usually does not have to be changed.

21

Chapter 7. Architecture of the OpenEngSB

This chapter tries to give a short summary of the most important concepts in the OpenEngSB

architecture.

The following graphic shows the architecture of the OpenEngSB. In the center we use a bus

system to integrate different modules. In this case we do not use a classical Enterprise Service

Bus (ESB), but rather the OSGi service infrastructure via Spring-DM (Section 7.1, “OpenEngSB

Enterprise Service Bus (ESB)”). We are using Apache Karaf as the OSGi environment. Karaf is

used in this case, instead of a most basic OSGi environment, such as Apache Felix or Eclipse

Equinox , because it supports us with additional features as extended console support and the feature

definitions. This base infrastructure, including all modifications required for the OpenEngSB is

called the Section 7.2, “OpenEngSB Infrastructure”. Within the OpenEngSB Infrastructure so called

Section 7.3, “OpenEngSB Components” and Section 7.4, “OpenEngSB Tool Domains” are installed.

Both types are written in a JVM compatible language, including OSGi configuration files to run in

the OpenEngSB Infrastructure. They are explained later within this chapter. Different tools running

outside the OpenEngSB Infrastructure are called Section 7.5, “Client Tools (Service Consumer)” or

Section 7.6, “Domain Tools (Service Provider)”, depending on their usage scenario. To integrate and

use them within the OpenEngSB so called Section 7.7, “Domain- and Client Tool Connectors” are

used. All of these concepts are explained within the next sections.

Technical view of the OpenEngSB highlighting the

most important concepts of the integration system

7.1. OpenEngSB Enterprise Service Bus (ESB)

One of the principal concepts for the OpenEngSB development is (if possible) to use already existing

and proven solutions rather than inventing new ones. In this manner the OpenEngSB is an extension

to the ESB concept. Typical ESBs such as Apache Servicemix or other JBI or ESB implementations

always have the feeling to be huge and bloated. Complex integration patterns, messaging, huge

http://karaf.apache.org
http://felix.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://servicemix.apache.org

Architecture of the OpenEngSB

22

configuration files and similar concepts/problems lead to this feeling. And those feelings are right.

They are bloated. The OpenEngsB tries a different approach. Using Karaf as its base framework the

environment is VERY lightweight. Depending on your use case you can use different configurations

and packages out of the box.

7.2. OpenEngSB Infrastructure

While Apache Karaf provides a rich environment and functionality we're not done with it. Via the

Spring-DM extension mechanism, AOP and the OSGi listener model the OpenEngSB directly extends

the environment to provide own commands for the console, fine grained security and a full grown

workflow model. These extensions are optional and not required if you want to use the platform alone.

Add or remove them as required for your use case.

7.3. OpenEngSB Components

These libraries are the OpenEngSB core. The core is responsible to provide the OpenEngSB

infrastructure as well as general services such as persistence, security and workflows. To provide best

integration most of these components are tied to the OpenEngSB ESB environment. Nevertheless, feel

free to add or remove them as required for your use case.

7.4. OpenEngSB Tool Domains

Although each tool provider gives a personal touch to its product their design is driven by a specific

purpose. For example, there are many different issue trackers available, each having its own advantages

and disadvantages, but all of them can create issues, assign and delete them. Tool Domains are based

on this idea and distill the common functionality for such a group of tools into one Tool Domain

interface (and component). Tool domains could be compared best to the concept of abstract classes

in in object orientated programming languages. Similar to these, they can contain code, workflows,

additional logic and data, but they are useless without a concrete implementation. Together with the

ESB, the OpenEngSB infrastructure and the core components the tool domains finally result in the

OpenEngSB.

7.5. Client Tools (Service Consumer)

Client Tools in the OpenEngSB concept are tools which do not provide any services, but consume

services provided by Tool Domains and Core Components instead. A classical example from software

engineering for a client tool is the Integrated Development Environment (IDE). Developer prefer to

have the entire development environment, reaching from the tickets for a project to its build results, at

hand. On the other hand they do not need to provide any services.

7.6. Domain Tools (Service Provider)

Domain Tools (Service Provider) Domain Tools, compared to Client Tools, denote the other extreme

of only providing services. Classically, single purpose server tools, like issue tracker or chat server,

match the category of Domain Tools best. Most tools in (software+) engineering environments fit of

course in both categories, but since there are significant technically differences between them they are

described as two different component types.

Architecture of the OpenEngSB

23

7.7. Domain- and Client Tool Connectors

Tool Connectors connecto tools to the OpenEngSB environment. They implement the respective

Tool Domain interface. As Client Tool Connectors they provide a Client Tool with an access to the

OpenEngSB services. Again, Domain- and Client Tool Connectors are mostly mixed up but separated

because of their technical differences. Additionally it is worth mentioning that tools can be integrated

with more than one connector. This allows one tool to act in many different domains. Apache Maven is

an example for such multi-purpose tools, relevant for build, as well as test and deploy of Java projects.

24

Chapter 8. Context Management

The context is one of the most important core concepts of the openengsb. It allows to reuse predefined

workflows in several contexts. A context may often represent a project or subproject. So it is possible

to execute the same workflow with the project-specific tool-instances and other metadata (like contact-

information).

To determine in which context an action should be executed a thread-local variable is used. The

ContextHolder keeps track of this variable (the current threads' context). Invoking the set- and get-

method will always manipulate the context of the current Thread. When a new Thread is spawned it

inherits the context from the parent thread.

Attention: When using Theadpools, the ContextHolder may malfunction (i.e. return the context of

some previous task that was run in the same thread). Use

ThreadLocalUtil.contextAwareExecutor(ExecutorService)

to convert any executor to a context-aware one. ExecutorServices returned by this method ensure that

the submitted tasks are executed in the same context as the thread they were submitted from.

This way connector-implementations and other client projects always can handle actions according to

the current context, and execute actions in specific a specific context. So when a person with a certain

role in the project (e.g. project manager) needs to be notified of some event, the value of his contact-

address is specific to the context of the project(s) he is managing.

8.1. Wiring services

The context is also used to handle the wiring of services in workflows. Suppose there are two projects

that use their own SCM-repositories and for both repositories connector-instances were created to poll

them. When executing a workflow contains an action that polls the SCM, the correct service ca be

picked by looking up the current thread's context.

In general workflows have references to several domains and other services which they interact with

during execution. Each project might have their own tools behind these domains, so these references

must be resolved at runtime depending on the current context.

For this to work the workflow-engine declares global variables that are used in rules and processes. A

variable is resolved by looking up the service with the same name in the current context. If no service

with that name is available in the context it is looked up in the "root"-context.

In detail the wiring is handled via the service-properties. Services contain properties where the key

is of the format "location.<contextid>". The value is a list of "locations" represented by an array of

strigns. So a service may have several locations in several contexts.

When a global variable is accessed during the execution of an action (from a process or rule), the osgi-

context is queried for the correspinding service. The service wired to this variable must have location

with the same name as the variable. The service is searched in the current context and the root-context.

If no service is found, the action is stalled for 30 seconds. If there is still no service found an Exception

is thrown. Internally this is handled using proxies. When the workflow service is started, all globals are

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/context/ContextHolder.java

Context Management

25

populated with proxies, that automatically resolve the service with the corresponding location when

a method is invoked.

Example: The auditing-service is registered with the interface AuditingDomain. The service has

property "location.root" with value {"auditing"} (array with one element). The workflow engine

contains a global named "auditing" and a rule that invokes a method on every Event that is processed.

When the rule fires and the consequence is executed, the proxy representing "auditing"-global

queries for a service with the location.currentContext or the location.root containing a location-entry

"auditing". Since root-services get a service-ranking of "-1" by default, the service current context's

would supersede the service located in the root-context.

26

Chapter 9. Persistence in the OpenEngSB

The OpenEngSB has a central persistence service, which can be used by any component within in

the OpenEngSB to store data. The service is designed for flexibility and usability for the storage of

relatively small amounts of data with no explicit performance requirements. If special persistence

features need to be used it is recommended to use a specialized storage rather than the general storage

mechanism.

The persistence service can store any Java Object, but was specifically designed for Java Beans.

The interface of the persistence service supports basic CRUD (create, update, retrieve, delete)

mechanisms. Instances of the persistence service are created per bundle and have to make sure that data

is stored persistently. If bundles need to share data the common persistence service cannot be used, as it

does not support this feature. The persistence manager is responsible for the management of persistence

service instances per bundle. On the first request from a bundle the persistence manager creates a

persistence service. All later requests from a specific bundle should get the exact same instance of the

persistence service.

Queries with the OpenEngSB persistence done via the persistence service. Behind this service an easy

query-by-example logic is used to retrieve your results. In some cases the comparision and storage

can create some wired problems for your specific use cases. For those cases the IgnoreInQueries

annotation had been added. Using this annotation on getters in classes persisted via the persistence

service querying them ignores those fields during trying to compare them to stored data.

The persistence solution of the OpenEngSB was designed to support different possible back-end

database systems. So if a project has high performance or security requirements, which can not be

fulfilled with the default database system used by the persistence service, it is possible to implement

a different persistence back-end. To make this exchange easier a test for the expected behavior of the

persistence service is provided.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceManager.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/util/IgnoreInQueries.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/persistence/PersistenceService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/persistence/src/test/java/org/openengsb/core/persistence/PersistenceServiceTest.java

27

Chapter 10. Security in the OpenEngSB

10.1. Usermanagement

The OpenEngSB has a central user management service, which can be used for example by an user

interface. The service is designed to manage your users. You can create new user and save them to the

persistence or retrieve, update and delete them.

The user management needs a back-end database, e.g. the central persistence service of the

OpenEngSB.

The interface of the User manager supports basic CRUD mechanisms (create, retrieve, update, delete).

The User is the used user model. It holds attributes like a password, username, if the user is enabled,

or his account is expired or locked. A user is identified by his username. So the username can not be

changed. Another attribute are the authorities. These are the roles granted to the user. These can be

for example "ROLE_ADMIN" which defines the user as admin. Depending on the roles, a user can

have different rights. For the OpenEngSB-UI a user has to have at least the role "ROLE_USER" which

is the default role.

10.2. Access control

Access control is done on the service level. Core-services and connector-instances are all published as

OSGi-services. Other services and components always reference these service instances. We use the

approach of AOP to achieve security of these services. The openengsb.core.security-bundle publishes

a service that serves as a method-interceptor. When it is attached to a service every method call on the

service is preceeded with an authorization-check.

A reference to the method-interceptor can be obtained by this line in the spring-context.xml

<osgi:reference id="securityInterceptor" interface="org.aopalliance.intercept.MethodInterceptor" />

In order to attach it to an existing bean, one has to create a ProxyFactoryBean:

<bean id="secureServiceManager" class="org.springframework.aop.framework.ProxyFactoryBean">

 <property name="proxyInterfaces">

 <value>other.ServiceInterface</value>

 </property>

 <property name="interceptorNames">

 <list>

 <value>securityInterceptor</value>

 </list>

 </property>

 <property name="target" ref="<realBean>" />

</bean>

When registering a service in code rather than in a spring context.xml this can be done as seen in the

AbstractServiceManager

import org.springframework.aop.framework.ProxyFactory;

//

// ...

//

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/security/UserManager.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/security/model/User.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/AbstractServiceManager.java

Security in the OpenEngSB

28

ProxyFactory factory = new ProxyFactory(serviceObject);

factory.addAdvice(securityInterceptor);

OpenEngSBService securedService = (OpenEngSBService) factory.getProxy();

The decision about the allowing the user access to a service as made by looking at the services

instanceId. Therefore, all services that are to be placed under this access control, must implement

OpenEngSBservice, and make sure the instanceId is unique enough to ensure security. You may want

to derive your service-class from AbstractOpenEngSBService.

The persistence of the security-bundle manages a set of GrantedAuthorities (Roles) for each instanceId.

There is one exception: Users with "ROLE_ADMIN" are always granted access.

10.3. Authentication

This chapter describes how to deal with security in internal bundles and client projects

For authentication the OpenEngSB provides an AuthenticationProvider as a service. It's obtainable

via blueprint.

 <reference interface="org.springframework.security.authentication.AuthenticationManager" />

This service is able to authenticate users

(org.springframework.security.authentication.UsernamePasswordAuthenticationToken) and bundles

(org.openengsb.core.security.BundleAuthenticationToken). The use of the former is pretty obvious.

The latter is used for authentication for internal actions, that require elevated privilages. This

authentication should be used with caution, and never be exposed externally for security reasons.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/OpenEngSBService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/AbstractOpenEngSBService.java

29

Chapter 11. Workflows

The OpenEngSB supports the modeling of workflows. This could be done by two different approaches.

First of all a rule-based event approach, by defining actions based on events (and their content) which

were thrown in or to the bus. Events are practical for "short-time handling" since they are also easy

to replace and extend. For long running business processes the secondary workflow method could be

used which is based on Section 11.3, “Processes” described in Drools-Flow.

The workflow service takes "events" as input and handles them using a rulebased system (JBoss

Drools). It provides methods to manage the rules.

The workflow component consists of two main parts: The RuleManager and the WorkflowService.

11.1. Workflow service

The workflow service is responsible for processing events, and makes sure the rulebase is connected

to the environment (domains and connectors). When an event is fired, the workflow-service spawns a

new session of the rulebase. The session gets populated with references to domain-services and other

helper-objects in form of global variables. A drools-session is running in a sandbox. This means that

the supplied globals are the only way of triggering actions outside the rule-session.

11.2. Rulemanager

The rule manager provides methods for modifying the rulebase. As opposed to plain drl-files, the

rulemanager organized the elements of the rulebase in its own manner. Rules, Functions and flows are

saved separately. All elements share a common collection of import- and global-declarations. These

parts are sticked together by the rulemanager, to a consistent rulebase. So when adding a new rule or

function to the rulebase, make sure that all imports are present before. Otherwise the adding of the

elements will fail.

11.3. Processes

In addition to processing Events in global/context-specific rules, it is also possible to use them to

control a predefined workflow. The WorkflowService provides methods for starting and controlling

workflow-processes.

When the workflow service receives an event, it is inserted into the rulebase as a new fact (and rules

are fired accordingly). In addition the event is "signaled" to every active workflow-process. Workflow

logic may use specific rules to filter these events.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/workflow/WorkflowService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/workflow/RuleManager.java

30

Chapter 12. Taskbox

The Taskbox enables you to combine workflows with Human Interactions.

12.1. Core Functionality

All workflows started in the OpenEngSB are supplied with the global variable ProcessBag. Inside the

workflow you can populate the ProcessBag with your data. As soon as Human Interaction is needed

you have to incorporate the sub-workflow "humantask", which wraps the ProcessBag into a Task. You

can then query the Taskbox service for open Tasks, and manipulate the data inside of the Task (Not

necessarily by Human Interaction). When you are finished, you again call the Taskbox service and

supply the changed Task. The changed data gets extracted and is handed back over to the workflow.

12.2. UI Functionality

The Webtaskbox service provides additional UI Features, if you want to integrate the Taskbox-Concept

into a wicket Page. You can query the Webtaskbox service for an Overview Panel that displays all

open Tasks. If the default Overview Panel doesn't fit your needs exactly you can develop your own

UI-Component using the (Core-)Taskboxservice. If you navigate onto a specific Task the Overview

Panel displays a (default) Detail Panel populated with the values of the Task, if there is no custom

Panel registered for the supplied tasktype. You can develop your own Detail-Panels and register them

for a specific Tasktype via the Webtaskbox service.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/workflow/model/ProcessBag.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/taskbox/model/Task.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/core/common/src/main/java/org/openengsb/core/common/taskbox/TaskboxService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/WebTaskboxService.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskOverviewPanel.java
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/ui/common/wicket/src/main/java/org/openengsb/ui/common/wicket/taskbox/web/TaskPanel.java

31

Chapter 13. External Domains and Connectors

Since tools are mostly neither developed for the OpenEngSB nor written in any way that they can

be directly deployed in the OpenEngSB environment a way is required to connect via different

programming languages than Java and from multible protocols.

13.1. Proxying

The proxy mechanism allows for any method call to be intercepted.

13.1.1. Proxying internal Connector calls

The proxy mechanism allows to create proxies for any domain. To create a proxy you have to provide

a port id, destination and service id to call on the remote service. A Port encapsulates the protocol that

is used to call another service. There are an OutgoingPort and IncomingPort interface for respective

purposes. The port id is used to load the Port via OSGI. To include a Port in OPENENGSB it just has

to be exported via OSGI. The destination is a string that has to be correctly interpreted by the port to

call the remote server. The service id is added as metadata do identify the service that shold get called

on the remote server. It may not be needed for certain implementations.

The proxy calls the CallRouter which redirects the methodcall to the respective Port. Security is

implemented in this layer.

32

Chapter 14. Deployer services

The OpenEngSB supports file-based configuration through its deployer services. These services are

constantly checking the "config/" directory for new/changed/deleted configuration files.

If a new file is created, its configuration is loaded into the OpenEngSB. When the file changes the

configuration is updated and when it is deleted the configuration is unloaded. Each deployer handles a

different type of configuration file represented by different file name extensions. Details and structure

of these files are covered in this section.

It should be noted that the OpenEngSB itself uses deployer services for internal configuration. For this

purpose the deployer services also listen for configuration files in "etc/". These config files however

are essential for the correct operation of the OpenEngSB and should not be modified.

14.1. Connector configuration

The connector deployer service creates, updates or deletes instances of connector services.

All files in the "config/" directory with the extension ".connector" are handled by the connector

deployer. The .connector files have to be simple property files containing the configuration properies

of a certain connector service and their values. Additionaly the property with the key "connector"

defines which type of connector should be created (corresponds to the "connector" property in the

service definition) and the property with the key "id" defines the new service id.

Example 14.1. Example .connector configuration file for the email connector

connector = email

id = testServiceId

user = user

password = test

prefix = [test]

smtpAuth = true

smtpSender = test@test.com

smtpPort = 25

smtpHost = smtp.testserver.com

14.1.1. Root services

Note, that root services (ie. connector services deployed from the "etc/" directory) are deployed with

a lower service ranking. This is done so that normal services are preferred when matching services.

33

Chapter 15. OpenEngSB Platform

The aim of the OpenEngSB project, as for every open source project, is to make the life of everyone

better. Or at least the life of engineers :). With that said, we want to support projects using the

OpenEngSB as base environment, or providing domains and connectors. While it is easy to find a

source repository and use the OpenEngSB (because of its business friendly Apache 2 license), it

is not that easy to get the visibility your project earns. We want to provide you with this visibility

by including your project into the OpenEngSB product family. Basically we provide you with the

following infrastructure:

• Sub domain within the OpenEngSB: yourproject.openengsb.org

• Upload space for a homepage at yourproject.openengsb.org

• Two mailinglists (yourproject-dev@openengsb.org and yourproject-user@openengsb.org)

• A git repository at github.com/openengsb/yourpoject

• A place at our issue tracker

• A place at our build server

To get your project on the infrastructure you have to use the Apache 2 license for your code and use

the OpenEngSB. It is not required to have any existing source base. Simply send your project proposal

to the openengsb-dev mailing list and we'll discuss your project. Don't be afraid; it's not as hard as

it sounds ;)

34

Part IV. OpenEngSB Available
Domains & Connectors

This part gives an overview about the domains and their functionality the OpenEngSB supports out of the box.

Furthermore each connector and necessary external tool configuration is explained.

The target audience of this part are developers and contributors.

35

Chapter 16. Notification Domain

The notification domain is an abstraction for basic notification services, like for example email

notification.

16.1. Description

The notification domain provides the functionality for sending notifications to a specific recipient.

16.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

16.3. Connectors

16.3.1. Email Connector

The email connector is a simple notification connector based on the java mail API.

16.3.1.1. External Tool Configuration

No external tool configuration is necessary.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/notification/src/main/java/org/openengsb/domain/notification/NotificationDomain.java

36

Chapter 17. SCM Domain

The source code management (SCM) domain is the tool domain for all SCM tools, like Git or

Subversion.

17.1. Description

The SCM Domain polls external repositories for changes of content under source control and provides

functionality to copy/export the repository content for further processing.

17.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

17.3. Connectors

17.3.1. Git Connector

The Git Connector is a SCM tool connector for the Git fast version control system.

17.3.1.1. External Tool Configuration

The external Git repository must be anonymously accessible with one of the following protocols:

1. git

2. http

3. ftp

No further configuration is needed.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/scm/src/main/java/org/openengsb/domain/scm/ScmDomain.java
http://git-scm.com/

37

Chapter 18. Issue Domain

The issue domain is the tool domain for all issue tracking tools, like Jira, Trac or Mantis.

18.1. Description

The issue Domain provides the possibility to create, update, delete and comment issues.

18.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

18.3. Connectors

18.3.1. Trac Connector

The Trac Connector is a issue tool connector for the Trac project management and issue tracker system.

18.3.1.1. External Tool Configuration

The external Trac tool has to be accessible via XmlRpc. For this purpose the XmlRpcPlugin has to be

installed (see http://trac.edgewall.org/wiki/PluginList).

18.3.2. Jira Connector

The Jira Connector is an issue connector for the Jira issue and project tracking system.

18.3.2.1. External Tool Configuration

The Jira connector should work with a default Jira installation. However, make sure that the RPC

plugin is enabled as described in the Jira XML-RPC Overview.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/issue/src/main/java/org/openengsb/domain/issue/IssueDomain.java
http://trac.edgewall.org/
http://trac.edgewall.org/wiki/PluginList
http://www.atlassian.com/software/jira/
http://confluence.atlassian.com/display/JIRA/JIRA+XML-RPC+Overview

38

Chapter 19. Report Domain

The report domain is the tool domain for report generation and management tools.

19.1. Description

The report domain supports basic report generation functionality, like event logging and manual report

building. Furthermore it provides basic report management features, like persistent storage of reports

and a category system for report storage.

19.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

19.3. Connectors

19.3.1. Plaintext Report Connector

The plain text report tool connector is simple implementation of the report domain, which generates

plain text reports.

19.3.1.1. External Tool Configuration

No external configuration is needed.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/report/src/main/java/org/openengsb/domain/report/ReportDomain.java

39

Chapter 20. Build Domain

The build domain is a domain for all build tools, like Maven or Ant.

20.1. Description

The build domain builds a specific pre-configured project or suite of projects.

20.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

20.3. Connectors
This domain is implemented by the Section 26.1.1, “Maven Connector”, which supports multiple

domains.

http://maven.apache.org/
http://ant.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/build/src/main/java/org/openengsb/domain/build/BuildDomain.java

40

Chapter 21. Test Domain

The test domain is a domain for all test tools, like Maven.

21.1. Description

The test domain runs all tests for a specific pre-configured project or suite of projects.

21.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

21.3. Connectors
This domain is implemented by the Section 26.1.1, “Maven Connector”, which supports multiple

domains.

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/test/src/main/java/org/openengsb/domain/test/TestDomain.java

41

Chapter 22. Deploy Domain

The deploy domain is a domain for all deploy tools, like Maven.

22.1. Description

The deploy domain deploys a specific pre-configured project or suite of projects.

22.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

22.3. Connectors
This domain is implemented by the Section 26.1.1, “Maven Connector”, which supports multiple

domains.

http://maven.apache.org/
https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/deploy/src/main/java/org/openengsb/domain/deploy/DeployDomain.java

42

Chapter 23. Auditing Domain

The auditing domain provides various auditing services

23.1. Description

The auditing domain stores auditing logs for later retrieval

23.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

23.3. Connectors

23.3.1. Memory Auditing Connector

The memory auditing connector stores every audit call in memory for later retrieval.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/auditing/src/main/java/org/openengsb/domain/auditing/TestDomain.java

43

Chapter 24. Appointment Domain

The appointment domain is the tool domain for calendar tools, like gcalendar or Facebook.

24.1. Description

The appointment domain provides the possibility to create, update, delete and retrieve appointments.

24.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/appointment/src/main/java/org/openengsb/domain/appointment/AppointmentDomain.java

44

Chapter 25. Contact Domain

The contact domain is the tool domain for all contact books in tools which are using contact books

like gcontacts or Facebook.

25.1. Description

The contact domain provides the possibility to create, update, delete and retrieve contacts.

25.2. Functional Interface

Link to the Java Domain Interface on Github. This interface also contains information about events

raised by this domain.

https://github.com/openengsb/openengsb/blob/openengsb-1.2.0.M4/domain/contact/src/main/java/org/openengsb/domain/contact/ContactDomain.java

45

Chapter 26. Multi-Domain Connectors

Some connectors support multiple domains. Therefore they cannot be categorized into a specific

domain.

26.1. Connectors

26.1.1. Maven Connector

The Maven Connector is a build, test and deploy tool connector for Maven.

26.1.1.1. External Tool Configuration

The Maven executable has to be on the system path to make this connector work.

http://maven.apache.org/

46

Part V. OpenEngSB
Commiters & Contributors

This part explains how to develop additional domains, connectors and similar parts. In addition it explains the

rules and infrastructure according to which the project is developed.

The target audience of this part are contributors.

47

Chapter 27. Getting Started as a Developer

This chapter describes the basic steps to get started as a developer for the OpenEngSB project.

27.1. Getting comfortable with the infrastructure

As any open source project the OpenEngSB development depends on a wide range of different

infrastructural and communication methods to get things done. The following sub-chapters describe

the different tools, their location and usage in the OpenEngSB development process.

27.1.1. Mailing Lists

The most important communication medium for the OpenEngSB development team is email. Mostly

all of the vital design, architectural and infrastructural decisions are discussed on the OpenEngSB

developer list. Therefore, the first step to get involved into the development of the OpenEngSB is to

register to the Google Groups OpenEngSB Developer Mailing List and say hello world.

While notifications from the Hudson Build Server, about code commits and Jira issues are vital

for the OpenEngSB core developer, they may not be as interesting for you. If you get annoyed

by the automatically generated notification mails ignore all mails from openengsb@gmail.com

and noreply@github.com to openengsb-dev@googlegroups.com. Please remember it is important to

configure both, to and from in your filter. Both addresses will also send notifications directly to you

which are important and should not be ignored!

27.1.2. Jira Issue Tracker

All issues are stored within a Jira instance reachable at issues.openengsb.org. Please use the issue

tracker to keep track of all bugs, ideas and new features you're currently working or of which you think

they might be interesting.

27.1.3. Code Repository

As for any open source project the source code is public available. We've chosen Github for this task.

The project is available at github.com/openengsb/openengsb.

As explained later within this document Github is not only used to store our code, but also for

collaboration, code review and patch-tracking.

27.1.4. Maven Repository

The OpenEngSB is available at Maven Central. We still have our own Maven repository at

maven.openengsb.org/ and snapshots are available via the sonatype Maven repository at http://

oss.sonatype.org.

27.1.5. Build Server

The master and integration branch of the OpenEngSB repository are watched and built by a Hudson

build server instance available at build.openengsb.org. Notifications about failures are directly sent to

the OpenEngSB developer list.

http://groups.google.com/group/openengsb-dev
http://issues.openengsb.org/jira/browse/OPENENGSB
http://github.com
http://github.com/openengsb/openengsb
http://repo1.maven.org/maven2/org/openengsb/
http://maven.openengsb.org/
http://oss.sonatype.org
http://oss.sonatype.org
http://build.openengsb.org/hudson/

Getting Started as a Developer

48

27.2. Prerequisites

First of all the latest JDK has to be installed on the system and the JAVA_HOME variable has to be set

accordingly. All further steps are described in the subsections of this chapter.

27.2.1. Installing Git

It is assumed that Git is installed. For Linux your distribution provides already a package for git. Please

use the package manager of your distribution (apt, yum, pacman, ...) to install it. For MAC binaries are

available at git-scm.com. For MS users cygwin or msysgit. After installing, set at least the following

variables:

 git config --global user.name "Firstname Lastname"

 git config --global user.email user@example.com

 git config --global core.autcrlf input

27.2.2. Installing Maven

Finally download Apache Maven3 and unpack it. Add the path of the maven binary to your PATH

variable. Furthermore you should set the MAVEN_OPTS environment variable to allow Maven to use

more RAM. If you don't you'll get Out Of Memory errors.

 export PATH=$PATH:/path/to/maven/bin

 export MAVEN_OPTS='-Xmx1024M -XX:MaxPermSize=512m'

Add these commands to ~/.bashrc to make the settings permanent.

27.3. Starting OpenEngSB

The next step is to get the OpenEngSB source by checking out the current master using git:

 git clone git://github.com/openengsb/openengsb.git

Now start the OpenEngSB by executing

 mvn clean install openengsb:provision

This command builds, tests and runs the OpenEngSB right from your command-line. Executing the

following command will shutdown it again:

git-scm.com
www.cygwin.com
code.google.com/p/msysgit

Getting Started as a Developer

49

 shutdown

27.4. Using Eclipse

Eclipse had been chosen by the OpenEngSB team as the main development environment. After

checkout the code the following command creates the required Eclipse project files:

 mvn install

 mvn openengsb:eclipse

Start Eclipse and select any workspace. The folder eclipse-workspace is ignored in the OpenEngSB

project structure for this purpose. But you can choose any other directory if you prefer. At the

preference page go to Java/Build Path/Classpath Variables and create a new M2_REPO pointing to

~/.m2/repository. Now use File, Import..., Existing Projects into Workspace. As the root directory

select the root of the OpenEngSB source. Eclipse will list several projects and for now it's best to

import them all by clicking Finish.

At openengsb/etc/eclipse/ eclipse configuration files for formatting can found. Checkstyle

configuration files are part of the openengsb-maven-plugin (Section 27.7.1, “openengsb-maven-

plugin”) and can be found here. The mvn openengsb:eclipse goal configures your eclipse project to

download and use the provided checkstyle configuration file, so no manual steps are necessary here

(however the formatter still needs to and should be configured manually).

27.5. Using Other IDEs than Eclipse

Basically, the OpenEngSB is developed in plain Java, which means any other IDE than Eclipse can be

used too. While there are tools for most IDEs to use Checkstyle, but non of it supports the formatting

file of the OpenEngSB. Please use Checkstyle, which automatically validates the eclipse formatting

rules too.

27.6. Git Documentation

27.6.1. Usage

First of all this chapter explains only the very basics of Git and only that parts directly relevant for the

development of the OpenEngSB project, but not the entire idea and possibilities of Git. Please read

some tutorials first to get how to work with Git and see this chapter more as an summary! You may

also take a look at the Git Documentation Page and the Pro Git Book.

27.6.2. Github

OpenEngSB is developed at github.com. Please create an account there and explore its features. Specify

your real name in the admin tab and add a picture. This makes it easier to associate your commits to you.

https://github.com/openengsb/openengsb-maven-plugin/raw/master/src/main/resources/checkstyle/checkstyle.xml
http://git-scm.com/documentation/
http://progit.org/book/
http://github.com/

Getting Started as a Developer

50

27.6.3. Starting up and configure

Before starting to work with Git some settings should be applied to Git. Therefore simply execute the

following commands.

git config --global user.name "Firstname Lastname"

git config --global user.email user@example.com

git config --global color.ui "auto"

git config --global pack.threads "0"

git config --global diff.renamelimit "0"

git config --global core.autocrlf "input"

Additionally execute the special settings for github as could be found on github in the "Account

Settings" tab is a point "Global git config information". Please use the two git commands described

there

git config --global github.user username

git config --global github.token token

If you don't already have an SSH key you can create one by executing ssh-keygen Simply answer all

questions from the application with "enter" without enter any values. Afterwards the content of the

id_rsa.pub file from your ~/.ssh/ directory should be submitted to github (Account Settings/SSH

public keys).

You may also want to setup the provided git-hooks. Hooks are scripts that automate some small tasks

in the git-workflow. To enable them they have to be located in the .git/hooks directory. You can

achieve this by copying the scripts located in the etc/git-hooks directory to .git/hooks

27.6.4. Contributor Workflow

Contributor are all developer who like to contribute to the OpenEngSB project, but not have commit

rights to openengsb/openengsb.

Please keep in mind, that this manual is NOT a Git tutorial. Github itself, e.g. provides a great help at

help.github.com. All base concepts such as forking, pull-requests, ...

Please start by choose or create a new issue. Now create a new fork of the OpenEngSB at Github

(if you've not done already so; otherwise this is explained here). Clone your fork, but also add

the original openengsb repository as remote repository. This is also explained here. In difference

to the Github tutorial please do not commit to the master, but rather create a new branch named

OPENENGSB-ISSUE_NUMBER_YOURE_WORKING_ON. Optionally append /DESCRIPTION

(e.g. OPENENGSB-586/mvn-eclipse-download-fix).

git checkout -b OPENENGSB-ISSUE origin/BRANCH

BRANCH is the point where you like to start your work. If you like to contribute to the head this will be

typically integration, but could also be a commit or a complete different branch. This is the OpenEngSB

schema for naming branches and we'll really appreciate if you work according to it.

http://book.git-scm.com/
http://help.github.com/forking/
http://help.github.com/forking/

Getting Started as a Developer

51

Now hack, commit and push as you like. If you think you're finished invoke mvn openengsb:prePush
(or use etc/scripts/pre-push.sh) to validate your code, tests, licenses and so on. If everything

works without errors create a Github pull request on Github, between the master or integration branch

(depending on where you've created your branch on) and your branch. This process is also explained at

help.github.com (here). In addition it will help if you add the link to the pull request to the issue you're

working on. A commiter will tend as fast as possible to your request and give feedback or directly

merge your commit into the integration/master branch.

27.6.5. Commiter Workflow

The only difference between a commiter and a contributor is that he has to watch and merge branches

of contributors. If a commiter is happy with the work of a contributor. Comments and other discussions

should be done on the mailing list and/or via the Github review system and pull requests.

In addition commiters typically do not create forks but rather create their branches directly in the

OpenEngSB repository. This is done because the repository is covered by the OpenEngSB build server

and in addition keeps everything closer together.

27.6.6. Additional Rules

1. (Contributor/Committer) All development is done in branches (also of the core developers) One

exception to this rule exists: Small fixes and maintenance work which is NOT related to a new

feature and does not exceed 2 commits should be cherry-picked into the master directly.

2. (Contributor/Committer) Rebase is not dead (although we use merges). Never ever commit local

merges. You still should develop in local dev branches and rebasing them with the upstream

branches. Only if nobody else has access to your fork you can be sure that nobody changed it!

3. (Committer) If merging branches from forked repositories ALWAYS use the --no-ff option for

merges; this will always create a merge node (even if a fast-forward merge is possible). This is

required to create a clear and consistent history!

4. Avoid backward merges from the master and keep feature branches small! This does not mean that

backward merges from master are forbidden. But they should not be done too often, since they

create a history not easy to read. Please use the method described on this page (with --no-ff --

no-commit) to reduce the number of merge nodes.

5. Use meaningful feature branch names. Using the merge history in the master you can easily follow

the development of features. But this requires (maybe long) good names! In addition, always start

with OPENENGSB-NUMBER of the issue you're working on. Try to always do work based on

issues. If no issue covers what you're doing create one.

27.7. Useful Tools

27.7.1. openengsb-maven-plugin

The openengsb-maven-plugin is a plugin for Apache Maven, intended to simplify various activities

(creating domains or connectors, building a release artifact of the whole project etc.) when developing

based on the OpenEngSB.

http://help.github.com/pull-requests/

Getting Started as a Developer

52

27.7.1.1. Configuring the openengsb-maven-plugin for your project

To use the openengsb-maven-plugin in your project add the following configuration to your project's

pom.xml:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

 ...

 <build>

 <plugins>

 <plugin>

 <groupId>org.openengsb</groupId>

 <artifactId>openengsb-maven-plugin</artifactId>

 <version>${openengsb.maven.plugin.version}</version>

 </plugin>

 </plugins>

 </build>

 ...

</project>

The plugin can now be invoked via mvn openengsb:<goal>

27.7.1.2. Purpose of the openengsb-maven-plugin

TBD

27.7.1.3. Changing the default configuration of the mojos

TBD

27.7.1.4. Available Goals

assemble or etc/scripts/assemble.sh

Installs the OpenEngSB and skips tests. Furthermore a nightly profile is activated if available in your

poms.

eclipse or etc/scripts/eclipse.sh

Generates eclipse configuration file for the module where it is invoked from and all submodules. The

generated eclipse projects are also configured to use the checkstyle rules shipped with the plugin (see

checkstyle mojo).

checkstyle

Performs a Checkstyle check of the project. The checkstyle configuration file which is used for the

check can be found here. We ship this configuration file with the plugin (and changes need to be done

there) because we think it may be useful for other OpenEngSB related projects. Setting up eclipse

projects with configured checkstyle becomes very easy that way (simply mvn openengsb:eclipse).

genConnector or etc/scripts/gen-connector.sh (For additional info how to create a connector see

Chapter 28, How To Create an Internal Connector)

https://github.com/openengsb/openengsb-maven-plugin/blob/master/src/main/resources/checkstyle/checkstyle.xml

Getting Started as a Developer

53

Guides interactively through the creation of a connector and generates the artifact via the connector

archetype.

genDomain or etc/scripts/gen-domain.sh (For additional info how to create a domain see

Chapter 29, How To Create an Internal Domain)

Guides interactively through the creation of a domain and generates the artifact via the domain

archetype.

licenseCheck or etc/scripts/license-check.sh

Performs a check if appropriate license headers are available in every source file. The licenseCheck

mojo wraps the com.mycila.maven-license-plugin. A large part of the default behavior of this mojo

can be changed in src/main/resources/license/licenseConfig.xml. See this site for available

configuration options. The openengsb-maven-plugin needs to be reinstalled after changing its default

behavior.

NOTE: pom.xml files are excluded from license check

Parameters:

• additionalExcludes

Defines path to a file where each line represents a pattern which files to exclude from license check

or license format (additionally to the default excludes).

licenseFormat or etc/scripts/license-format.sh

Adds a license header to files where the license header is missing. Regarding the configuration for this

mojo the same applies as for licenseCheck.

NOTE: pom.xml files are excluded from license format

Parameters:

• additionalExcludes

see description of licenseCheck

prePush or etc/scripts/pre-push.sh

Builds and installs the openengsb, checks for license headers, performs a Checkstyle check and runs

the integration tests.

Parameters:

• additionalExcludes

see description of licenseCheck

provision or etc/scripts/run.sh / etc/scripts/quickrun.sh

Equivalent to execute karaf or karaf.bat per hand after build by mvn clean install in a (typically)

assembly directory.

http://code.google.com/p/maven-license-plugin/wiki/Configuration#maven-license-plugin_configuration_options

Getting Started as a Developer

54

Parameters:

• provisionPathUnix

This setting should be done in the one of the assembly folders and have to point to the final directory

where the karaf system, etc configs and so on consist.

• provisionExecutionPathUnix

The path to the executable in the unix archive file

• additionalRequiredExecutionPathUnix

Sometimes it's required that some executable files, provided in provisionExecutionPathUnix execute

other files which have to made executable to work correctly on themselves. Those files should be

specified here.

• provisionPathWindows

This setting should be done in the one of the assembly folders and have to point to the final directory

where the karaf system, etc configs and so on consist.

• provisionExecutionPathWindows

The path to the executable in the windows archive file

• additionalRequiredExecutionPathWindows

Sometimes it's required that some executable files, provided in provisionExecutionPathWindows

execute other files which have to made executable to work correctly on themselves. Those files

should be specified here.

These parameters are typically configured in the pom of your assembly project (/assembly/pom.xml

for the OpenEngSB)).

pushVersion or etc/scripts/push-version.sh

Updates the development version.

Parameters:

• developmentVersion

The new SNAPSHOT version.

releaseNightly or etc/scripts/release-nightly.sh

Mojo to perform nightly releases. This mojo activates the nightly profile in the project, where you can

put your additional configuration for nightly releases (To see what these profiles can be necessary for

please read the descript of the other release mojos).

release<XXX> (You can find a detailed description of the OpenEngSB release process in Chapter 31,

Release and Release Process)

Getting Started as a Developer

55

The release<XXX> mojos (except Nightly) wrap the maven-license-plugin, basically just invoking

mvn release:prepare and then mvn release:perforn with some useful default configuration which

can be reused for other projects related to the openengsb. These mojos perform a release and activate

the <XXX> profile. These release profiles are important and are required to ..

• .. select the appropriate passphrase for the maven release repository from your settings.xml. For

additional information on this topic see Section 31.3, “Configure Maven”.

• .. set links depending on the release type. For examples please see the profiles in the pom

• .. configure distribution management of the project site, depending on the release type. For examples

see profiles in docs/homepage/pom

Parameters:

• connectionUrl

URL to your SCM repository (e.g. scm:git:file://~/openengsb). During the release process changes

(version updates, etc) are commited into your SCM.

Goals:

• releaseFinal or etc/scripts/release-final.sh

profile = final

• releaseMilestone or etc/scripts/release-milestone.sh

profile = milestone

• releaseRC or etc/scripts/release-rc.sh

profile = rc

• releaseSupport or etc/scripts/release-support.sh

profile = support

http://code.google.com/p/maven-license-plugin/
https://github.com/openengsb/openengsb/blob/master/pom.xml
https://github.com/openengsb/openengsb/blob/master/docs/homepage/pom.xml

56

Chapter 28. How To Create an Internal Connector
This chapter describes how to implement a connector for the OpenEngSB environment. A connector

is an adapter between an external tool and the OpenEngSB environment. Every connector belongs to

a domain which defines the common interface of all its connectors. This means that the connector is

responsible to translate all calls to the common interface to the externally provided tool.

28.1. Prerequisites

In case it isn't known what a tool domain is and how it defines the interface for the tool connector

then Section 7.4, “OpenEngSB Tool Domains” is a good starting point. If there's already a matching

domain for this tool it is strongly recommended to use it. If the tool requires a new domain to be created

relevant information can be found in Chapter 29, How To Create an Internal Domain.

28.2. Creating a new connector project

To take burden off the developer of creating the initial boilerplate code and configuration, a

Maven archetype is provided for creating the initial project structure. Furthermore we provide the

openengsb-maven-plugin (see Section 27.7.1, “openengsb-maven-plugin”) (or the etc/scripts/

gen-connector.sh script, which wraps the invocation of the maven plugin) which simplifies the

creation of a connector project from the archetype. It should be used for assisted creation of a new

connector project.

28.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genConnector goal of the

openengsb-maven-plugin executes additional tasks, I.e. renaming of the resulting project. Furthermore,

it tries to make sure that the new project is consistent with the naming conventions of the OpenEngSB

project.

The following parameters have to be specified to execute the correct archetype:

• archetypeGroupId - the groupId of the OpenEngSB connector archetype.

• archetypeArtifactId - the artifactId of the OpenEngSB connector archetype.

• archetypeVersion - the current version of the OpenEngSB connector archetype.

The following parameters have to be defined for the parent of the new connector. It is not solely parent

of the connector itself, but parent of the implementation of the domain and all other connectors of

this domain too.

• parentArtifactId - the artifactId of the project parent.

The following parameters have to be defined for the domain of the new connector.

• groupId - the groupId of the domain.

• domainArtifactId - the artifactId of the domain.

The following parameters have to be defined for the connector.

How To Create an Internal Connector

57

• artifactId - the connector artifact id. Has to be "openengsb-domains-<yourDomain>-

<yourConnector>".

• version - the package for the source code of the domain implementation. Has to be

"org.openengsb.domains.<yourDomain>".

• domainInterface - The name of the domain interface.

• parentPackage - The package in which the domain interface can be found.

• package - the package for the connector code. Usually <parentPackage>.<yourConnector> is used.

• name - the name of the implementation module. Has to be "OpenEngSB :: Domains ::

<yourDomain> :: <yourConnector>"

Where <yourDomain> has to be replaced by your domain name and <yourConnector> has to be

replaced by the respective connector name.

Note that the archetype will use the artifactId to name the project, but the OpenEngSB convention is

to use the connector name. Therefore you will have to rename the resulting project (however if you

use the genConnector mojo, this renaming will be performed automatically). Do not forget to check

that the new connector is included in the modules section of the domain parent pom.

28.2.2. Using mvn openengsb:genConnector

Simply invoke mvn openengsb:genConnector from the connector directory (connector/)

(alternatively the etc/scripts/gen-connector.sh script can be used which invokes the openengsb-

maven-plugin for you).

 connector $ mvn openengsb:genConnector

The mojo tries to guess as much as possible from your previous input. Guessed values are displayed

in brackets. If the guess is what you want, simply acknowledge with Return. The following output has

been recorded by executing the script in the connector/ directory:

Domain Name [domain]: notification <Enter>

Domain Interface [NotificationDomain]: <Enter>

Connector Name [myconnector]: twitter <Enter>

Version [1.0.0-SNAPSHOT]: <Enter>

Project Name [OpenEngSB :: Domains :: Notification :: Twitter]: <Enter>

Only the domain and connector name was set, everything else has been guessed correctly. After

these inputs are provided the Maven Archetype gets called and may ask you for further inputs. You

can simply hit Return each time to acknowledge standard values. If it finishes successfully the new

connector project is created and you may start implementing.

28.3. Project Structure

The newly created connector project should have the exact same structure as the following listing:

How To Create an Internal Connector

58

-- pom.xml

-- src

 -- main

 -- java

 | -- org

 | -- openengsb

 | -- domains

 | -- notification

 | -- twitter

 | -- internal

 | | -- MyServiceImpl.java

 | | -- MyServiceInstanceFactory.java

 | -- MyServiceManager.java

 -- resources

 -- META-INF

 | -- spring

 | -- connector-context.xml

 -- OSGI-INF

 -- l10n

 -- bundle_de.properties

 -- bundle.properties

The MyServiceImpl class implements the interface of the domain and thus is the communication

link between the OpenEngSB and the connected tool. To give the OpenEngSB (and in the long run

the end user) enough information on how to configure a connector, the MyServiceInstanceFactory

class provides the OpenEngSB with meta information for configuring and functionality for creating

and updating a connector instances. The MyServiceManager class connects connector instances

with the underlying OSGi engine and OpenEngSB infrastructure. It exports instances as OSGi

services and adds necessary meta information to each instance. Since the basic functionality is

mostly similar for all service managers, the MyServiceManager class extends a common base class

AbstractServiceManager. In addition the AbstractServiceManager also persists the configuration

of each connector, so that the connector instances can be restored after a system restart.

The spring setup in the resources folder contains the setup of the service manager. Additional bean

setup and dependency injection can be configured there.

The OpenEngSB has been designed with localization in mind. The Maven Archetype already

generates two bundle*.properties files, one for English (bundle.properties) and one for the German

(bundle_de.properties) language. Each connector has to provide localization through the properties

files for service and attributes text values. This includes localization for names, descriptions, attribute

validation, option values and more. For convenience the BundleStrings class is provided on all method

calls where text is needed for user representation for a specific locale.

28.4. Integrating the Connector into the OpenEngSB
environment

The service manager is responsible for the integration of the connector into the OpenEngSB

infrastructure. The correct definition of this service is critical.

59

Chapter 29. How To Create an Internal Domain
This chapter describes how to implement a domain for the OpenEngSB environment. A domain

provides a common interface and common events and thereby defines how to interact with connectors

for this domain. For a better description of what a domain exactly consists of, take a look at the

architecture guide Chapter 7, Architecture of the OpenEngSB.

29.1. Prerequisites

In case it isn't known what a domain is and how it defines the interface and events for connectors, then

Section 7.4, “OpenEngSB Tool Domains” is a good starting point.

29.2. Creating a new domain project

To get developers started creating a new domain a Maven archetype is provided for creating the initial

project structure. The openengsb-maven-plugin (see Section 27.7.1, “openengsb-maven-plugin”) or

the etc/scripts/gen-domain.sh script (which only wraps the invocation of the plugin) simplifies the

creation of a domain.

29.2.1. Using the Maven Archetype

It is not recommended to use the maven archetype directly, because the genDomain goal of the

openengsb-maven-plugin executes additional tasks, i.e. renaming of the resulting project. Furthermore

it tries to make sure that the new project is consistent with the naming conventions of the OpenEngSB

project.

The following parameters have to be specified to execute the correct archetype:

• archetypeGroupId - the groupId of the OpenEngSB domain archetype.

• archetypeArtifactId - the artifactId of the OpenEngSB domain archetype.

• archetypeVersion - the current version of the OpenEngSB domain archetype.

The following parameters have to be defined for the parent of the new domain. It is not solely parent

of the domain implementation, but parent of all connectors of this domain too.

• groupId - the groupId of the project parent. Has to be "org.openengsb.domains.<yourDomain>".

• artifactId - the artifactId of the project parent. Has to be "openengsb-domains-<yourDomain>-

parent".

• version - the version of the domain parent, which is usually equal to the current archetype version.

• name - the name of the parent module. Has to be "OpenEngSB :: Domains :: <yourDomain> ::

Parent"

The following parameters have to be defined for the implementation of the new domain.

• implementationArtifactId - the implementation artifact id. Has to be "openengsb-domains-

<yourDomain>-implementation".

How To Create an Internal Domain

60

• package - the package for the source code of the domain implementation. Has to be

"org.openengsb.domains.<yourDomain>".

• implementationName - the name of the implementation module. Has to be "OpenEngSB ::

Domains :: <yourDomain> :: Implementation"

Where <yourDomain> has to be replaced by your domain name which is usually written in lower

case, i.e. report for the report domain.

Note that the archetype will use the artifactId to name the project, but the OpenEngSB convention is to

use the domain name. Therefore you will have to rename the resulting project. Do not forget to check

that the new domain is included in the modules section of the domains pom.

29.2.2. Using mvn openengsb:genDomain

Simply invoke mvn openengsb:genDomain from the domains directory in your OpenEngSB repository

(alternatively the etc/scripts/gen-domain.sh script can be used which invokes the openengsb-

maven-plugin for you).

 domains $ mvn openengsb:genDomain

You'll be asked to fill in a few variables which are needed to create the initial project structure. Based

on your input, the mojo tries to guess further values. Guessed values are displayed in brackets. If the

guess is correct, simply acknowledge with Return. As example, the following output has been recorded

while creating the Test domain:

Domain Name [mydomain]: test <Enter>

Version [1.0.0-SNAPSHOT]: <Enter>

Prefix for project names [OpenEngSB :: Domains :: Test]: <Enter>

Only the domain name has been filled in, while the rest has been correctly guessed. After giving the

inputs, the Maven archetype gets executed and may ask for further inputs. You can simply hit Return,

as the values have been already correctly set. If the mojo finishes successfully two new Maven projects,

the domain parent and domain implementation project, have been created and setup with a sample

implementation for a domain.

29.2.3. Project structure

The newly created domain should have the exact same structure as the following listing:

-- implementation

| -- pom.xml

| -- src

| -- main

| | -- java

| | -- org

| | -- openengsb

| | -- domains

| | -- mydomain

| | -- MyDomain.java

How To Create an Internal Domain

61

| | -- MyDomainEvents.java

| | -- MyDomainProvider.java

| -- resources

| -- META-INF

| | -- spring

| | -- mydomain-context.xml

| -- OSGI-INF

| -- l10n

| -- bundle_de.properties

| -- bundle.properties

-- pom.xml

The project contains stubs for the domain interface, the domain events interface and the domain

provider and a resources folder with the spring setup and property files for internationalization.

Although the generated domain does in effect nothing, you can already start the OpenEngSB for testing

with mvn clean install openengsb:provision and the domain will be automatically be picked up

and started.

The spring setup in the resources folder already contains the necessary setup for this domain to work

in the OpenEngSB environment. Furthermore the default implementation proxies for the domain

interface, which forwards all service calls to the default connector for the domain and the default

implementation of the domain event interface, which forwards all events to the workflow service of

the OpenEngSB are configured.

Each OpenEngSB bundle (core, domain, connector) has been designed with localization in mind. The

Maven Archetype already creates two bundle*.properties files, one for English (bundle.properties)

and one for the German (bundle_de.properties) language. Each connector has to provide localization

through it own properties files. For domains, this only means localization for a name and description

of the domain itself.

29.3. Components

1. Domain interface - This is the interface that connectors of that domain must implement. Operations

that connectors should provide, are specified here. Events that are raised by this Domain in

unexpected fashion (e.g new commit in scm system) are specified on the Interface. The Raise

Annotation and the array of Event classes it takes as an argument are used. If the Raise annotation

is put on a method the events that are specified through the annotation are raised in sequence upon

a call.

2. Domain event interface - This is the interface the domain provides for its connectors to send events

into OpenEngSB. The event interface contains a raiseEvent(SomeEvent event) method for each

supported event type.

3. Domain Provider - The domain provider is a service that provides information about the domain

itself. It is used to determine which domains are currently registered in the environment. There is

an abstract class, that takes over most of the setup.

4. Spring context - There are three services, that must be registered with the OSGi service-

environment. First, there is the Domain Provider. Moreover, the domain must provide a kind

of connector itself since it must be able to handle service calls and redirect it to the default-

connector specified in the current context. And finally the domain provides an event interface for its

How To Create an Internal Domain

62

connectors which can be used by them to send events into OpenEngSB. The default implementation

of this event interface simply forwards all events sent through the domain to the workflow service.

However, domains can also provide their own implementation of their event interface and add data

to events or perform other tasks. There is a bean factory that creates a Java-Proxy that can be used

as ForwardService both for the forwarding of service calls from domain to connector and for the

forwarding of events to the workflow service. The service call to ForwardService looks up the

default-connector for the specified domain in the current context and forwards the method-call right

to it. The event forward service simply forwards all events to the workflow service of OpenEngSB.

29.4. Connectors

For information regarding the implementation of connectors for the newly created domain see

Chapter 28, How To Create an Internal Connector.

63

Chapter 30. Prepare and use Non-OSGi Artifacts

Basically, wrapped JARs do not differ in any way from basic jars, besides that they are deployable in

OSGi environments. They are used as regular jar files in the OpenEngSB. Nevertheless, the wrapping

itself is not as painless. This chapter tries to explain the process in detail.

30.1. Create Wrapped Artifacts

This chapter is a step by step guide on how to create a wrapped JAR.

1. In case that no osginized library is available in the public repositories a package has to be created.

Because of the simplicity of the process it should be done by hand. First of all create a folder with

the name of the project you like to wrap within openengsb/wrapped. Typically the groupId of the

bundle to wrap is sufficient. For example, for a project wrapping all Wicket bundles the folder

org.apache.wicket is created.

2. As a next step add the newly created folder as a module to the openengsb/wrapped/pom.xml file

in the module section. For the formerly created Wicket project org.apache.wicket should be added

to the module section.

3. Now create a pom.xml file and a osgi.bnd file in the newly created project folder.

4. The pom.xml contains the basic project information. As parent for the project the wrapped/pom.xml

should be used. Basically for every wrapped jar the project has the following structure:

<?xml version="1.0" encoding="UTF-8"?>

<!--

OPENENGSB LICENSE

-->

<project>

 <parent>

 <groupId>org.openengsb.wrapped</groupId>

 <artifactId>openengsb-wrapped</artifactId>

 <version>1</version>

 </parent>

 <properties>

 <bundle.symbolicName>wrapped_jar_group_id</bundle.symbolicName>

 <wrapped.groupId>wrapped_jar_group_id</wrapped.groupId>

 <wrapped.artifactId>wrapped_jar_artifact_id</wrapped.artifactId>

 <wrapped.version>wrapped_jar_version</wrapped.version>

 <bundle.namespace>${wrapped.groupId}</bundle.namespace>

 </properties>

 <modelVersion>4.0.0</modelVersion>

 <groupId>${wrapped.groupId}</groupId>

 <artifactId>org.openengsb.docs.${wrapped.groupId}</artifactId>

 <version>${wrapped.version}</version>

 <name>${bundle.symbolicName}</name>

 <packaging>bundle</packaging>

 <dependencies>

 <all_jars_which_should_be_embedded />

 </dependencies>

Prepare and use Non-OSGi Artifacts

64

</project>

5. The osgi.bnd file contains the OSGi specific statements for the maven-bundle-plugin. While the

default export and import are already handled in the root pom project specific settings have to be

configured here. For example all packages within the bundle-namespace are always exported. This

is for most scenarios sufficient. In addition all dependencies found are automatically imported as

required. This is generally not desired. Instead the parts of the library which have to be imported

should be defined separately. The following listing gives a short example how such a osgi.bnl file

can look like. For a full list of possible commands see the maven-bundle-plugin documentation.

#

OPENENGSB LICENSE

#

Embed-Dependency: *;scope=compile|runtime;type=!pom;inline=true

Import-Package: sun.misc;resolution:=optional,\

javax.servlet;version="[2.5.0, 3.0.0)",\

*;resolution:=optional

30.2. Tips and Tricks

Although the description above sounds quite simple (and wrapping bundles is simple mostly) still

some nasty problems can occur. This section summarizes good tips and ideas how to wrap bundles

within the OpenEngSB.

• The best workflow to wrap a bundle is according to our experiences, to execute the previously

described steps and simply start the OpenEngSB (openengsb:provision). Either it works or creates

a huge stack of exceptions with missing import statements. Simply try to fulfill one problem, than

start again till all references are resolved.

• Embedding artifacts is nothing bad. Although it is recommended to use all references artifacts of a

bundle directly as OSGi components it can be such a pain sometimes. Some references are simply

not required by any other bundle or are too hard to port. In such cases feel free to directly embed

the dependencies in the wrapped jar.

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html

65

Chapter 31. Release and Release Process
This section provides a step by step description to execute a release of the OpenEngSB. It is relevant

for everyone marked in the OpenEngSB Team List as release manager because only they have the

required rights to execute the following steps.

31.1. Releases and the OpenEngSB

Every release of the OpenEngSB consists of the following parts: RELEASE.MAJOR.MINOR.TYPE.

Every release of this type is available at Maven Central. Optionally SNAPSHOT is appended. Snapshot

releases are available from the Sonatype Snapshot repository. This section explains what each modifier

means and how it is used within the OpenEngSB.

SNAPSHOTS: Snapshots are always available from the latest build of the OpenEngSB. They are taken

from the master branch automatically at each commit.

TYPE: Type could be MX, RCX or RELEASE, where X is a number. While RELEASE marks a

final release, ready for use in your production environment, M and RC are typically not ready for

production. M stands for Milestone release and is cut every two weeks to present the current state of the

OpenEngSB and allow a coarse grained planning and roadmap for the OpenEngSB team. RC, release

candidates, are handled differently. After everything is finished and the OpenEngSB teams think that

the current work is ready for a release, we provide a release candidate and invite everyone to test the

release. If there are any issues with the release we fix them and provide another release candidate.

During this process no new features, but only bug fixes are handled. We continue this process as long

as there are no new bug reports for a RC for two weeks. Then we re-release the latest release candidate

as final release. This process only applies for RELEASE and MAJOR. MINOR is handled differently,

as explained later on.

RELEASE is a increasing number used for mayor changes within the OpenEngSB architecture. In

addition all methods and interfaces marked as deprecated are removed during such a release. It is also

possible that a RELEASE does not enhance any mayor architectural concept but is only used to get rid

of all the deprecated methods, generated during MAJOR releases.

MAJOR is the main feature development number of the OpenEngSB. Each release containing new

features will be a MAJOR release. Nevertheless, between MAJOR releases architectural concepts are

not removed but only set to deprecated. This means they only enhance functionality but try to not

break with former releases.

MINOR releases are bug-fix releases. They do not include any new features but only fix bugs within

the OpenEngSB. They have no release plan, but are simply cut after each bug-fix.

To visualize the explained process the following example. Assume we have released

openengsb-1.0.0.RELEASE. Now we're working on openengsb-1.1.0.RELEASE. Therefore we start

developing openengsb-1.1.0.M1 which will be released in two weeks. During the development of

1.1.0.M1 a bug occurs at openengsb-1.0.0.RELEASE. During the development the bug is fixed and

openengsb-1.0.1.RELEASE is released. After 1.1.0.M1 we require three additional milestone releases

to get feature releases. Six weeks after 1.1.0.M1 we'll release 1.1.0.RC1. From now on we continue

to develop 1.2.0.M1 (or 2.0.0.M1, depending on the gravity of the changes) and wait for feedback on

1.1.0.RC1. Now a bug-report occurs for 1.0.1.RELEASE. We fix the bug, release 1.0.2.RELEASE

http://openengsb.org/team-list.html
http://repo1.maven.org/maven2/
https://oss.sonatype.org/content/groups/public/

Release and Release Process

66

with the fix. If it also affects 1.1.0.RC1, we fix the bug there too and release 1.1.0.RC2 (still working

on 1.2.0.M1(!)). Now assume that some other bug reports are received for 1.0.0.RC2. We fix them and

release 1.1.0.RC3. In the meantime we finished 1.2.0.M1 and start work on 1.2.0.M2. Now two weeks

after the release of 1.1.0.RC3 without any new bug-reports we re-release 1.1.0.RC3 to 1.1.0.RELEASE

(starting the game again from the beginning).

31.2. Git Branches

For the best cooperation between Git and Maven the OpenEngSB team has developed its own workflow

with branches during releases. For different project phases (milestone, RC, final, support) different

workflows apply.

31.2.1. New Feature Workflow

For new features the already described workflow apply. This means create a feature branch based on

the integration branch, add your commits and create a pull request if you're finished. Your changes

will be merged (after review) to the integration branch. From time to time the integration branch ins

merged into the master, which is pushed as snapshots to sonatype.

31.2.2. Milestone Releases

For milestone releases about one day before a planned release a openensb-1.X.0-release branch is

created. This branch can be forward merged to integration as often as liked (no backward merges are

allowed). If all final bugs and changes are done the MX version is released on this branch and the

branch is merged into integration and deleted again. During this process any number of new features

are merged into integration, without affecting the release any longer.

31.2.3. Release Candidates

RCs are the pre-level for final releases. This means, after the openengsb team decides a release is

ready to go, two new branch are created from the latest commit AFTER the milestone release (where

the mvn versions are set back to the snapshot version): openengsb-1.X.x-dev and openengsb-1.X.x-

release. openengsb-1.X.x-dev is used for bug-fixes. Every fix which should also be merged into

the integration branch/master should be branched off openengsb-1.X.x-dev and afterewards merged

into integration and openengsb-1.X.x-dev. If a release is ready openengsb-1.X.x-dev is merged into

openengsb-1.X.x-release, where the release takes place. BUT no merge from openengsb-1.X.x-release

to openengsb-1.X.x-release is allowed!

31.2.4. Final and Support Releases

All support and final releases are handled exactly as the RC releases between the openengsb-1.X.x-

dev and openengsb-1.X.x-release branch.

31.3. Configure Maven

For the right rights to deploy to maven central and upload maven site to openengsb.org the following

entries are required in your ~/.m2/settings.xml file:

<settings>

Release and Release Process

67

 <server>

 <id>sonatype-nexus-snapshots</id>

 <username>SONATYPE_USERNAME</username>

 <password>SONATYPE_PASSWORD</password>

 </server>

 <server>

 <id>sonatype-nexus-staging</id>

 <username>SONATYPE_USERNAME</username>

 <password>SONATYPE_PASSWORD</password>

 </server>

 <server>

 <id>OpenengsbWebServer</id>

 <username>OPENENGSB_SERVER_USERNAME</username>

 <password>OPENEGNSB_SERVER_PASSWORD</password>

 </server>

 <profiles>

 <profile>

 <id>milestone</id>

 <properties>

 <gpg.passphrase>GPG_PASSPHRASE</gpg.passphrase>

 </properties>

 </profile>

 <profile>

 <id>release</id>

 <properties>

 <gpg.passphrase>GPG_PASSPHRASE</gpg.passphrase>

 </properties>

 </profile>

 <profile>

 <id>final</id>

 <properties>

 <gpg.passphrase>GPG_PASSPHRASE</gpg.passphrase>

 </properties>

 </profile>

 </profiles>

<settings>

All the usernames and passwords can be retrieved from someone marked as administrator in the

OpenEngSB Team List.

In addition you have to have a GPG key for your mail address (the same you're using to commit to the

OpenEngSB source repository which is uploaded to the MIT Key Server.

31.4. Adapt Jira

A word in front, how Jira is used for the OpenEngSB. Jira is used for bug tracking and release planning.

ONLY each Milestone release has its own target. Release candidates and final releases are handled

differently. Since we release RC and MINOR releases quite often its much too much administration

work to keep JIRA up to date.

Ok, knowing that the release process is simple:

• If you release a milestone release close the release target (e.g. 1.0.0.M1)

• If you release a release candidate create a VERSION.RCX release target and close the old one.

• If you release a final release (MAJOR RELEASE) create a new release target 1.0.X.RELEASE.

• If you release a minor release close the 1.0.X.RELEASE target and create 1.0.(X+1).RELEASE.

http://openengsb.org/team-list.html
hkp://pgp.mit.edu/

Release and Release Process

68

31.5. Perform the release

Performing a release is quite simple, because of the maven release plugin and some scripts. Simple

follow these steps:

• First of all make sure that the NOTICE file is up-to-date using notice:generate

• Now invoke mvn openengsb:release{Final|Milestone|Support|RC} -DconnectionUrl=path/to/
your/repo (e.g. mvn openengsb:releaseMilestone -DconnectionUrl=scm:git:file://~/openengsb)

• After the artifacts are available for sync to maven central you have to push them from the staging

to the final repository. Therefore follow the steps as explained here

• If everything works fine execute git push;git push --tags

31.6. Spread the News

Post a message to the OpenEngSB twitter account with the following content:

openengsb-VERSION "NAME" released, closing XX issues (JIRA_RELEASE_REPORT_SHORT_URL).

 Try the new features now: http://openengsb.org

Mails in this case are not only used for notification but also to get the developers and users to try a

new release and report issues and problems. Therefore, we use different templates for different types

of releases of the project.

The following template shows a copy and paste template for mails send for a release candidate. This

mail should only be sent to the developer mailing list:

Hey guys,

I've just uploaded openengsb-1.0.0.RC4 to maven central (Should be available

within the next hour).

Sources can be downloaded here:

https://github.com/openengsb/openengsb/zipball/openengsb-1.0.0.RC4

The binary release can be downloaded here:

http://repo1.maven.org/maven2/org/openengsb/openengsb/1.0.0.RC4/openengsb-1.0.0.RC4.zip

Between openengsb-1.0.0.RC3 and openegnsb-1.0.0.RC4 we've fixed the following

issues:

** Bug

 * [OPENENGSB-548] - jetty7 - felix problems

 * [OPENENGSB-605] - Use png as favicon for openengsb war file and script

** Improvement

 * [OPENENGSB-603] - Context has to be stored persistently and

 * restored on system startup

 * [OPENENGSB-610] - Maven connector has to support the execution of a configurable command

** Task

 * [OPENENGSB-606] - update docs new jira release

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide

Release and Release Process

69

** TBD

 * [OPENENGSB-589] - document release process for stable branches

Please give it a try and report all problems you encounter here:

http://issues.openengsb.org/jira/browse/OPENENGSB/fixforversion/10142

If there are no new issues reported within the next 72 hours I set RC4 as the

final release 1.0.0.RELEASE.

Kind regards,

andreas

31.7. Prepare Changelog

The changelog is a file to inform users about the changes in the version they are using. This file should

only contain the releases which are done in one branch. E.g. the master will never contain changelog

about minor releases; because of the way we handle Jira those changes are captured and included

anyhow.

Now the CHANGELOG.md file has to be updated. Therefore the following template with the correct

version have to be copied in the current changelog file (the latest version always has the most "on-

top" position in the text file):

openengsb-VERSION

Add a General Description

Highlights

 * [e.g.] org.openengsb.domain.scm.doSomething() is removed

Details

Copy JIRA issues here

The following sections explain shortly what changes belong to which part of the changelog.

31.7.1. General Description

The general description summarizes the most important changes in this release. This is a short and

verbal description of the changes.

31.7.2. Highlights

The highlight section could be a little bit more detailed than the general description. Things which

should be changed by developers could be explained here and other important points could be lined

up here.

31.7.3. Details

The details section contains a copy of the release notes generated by Jira if a developer wants to take

a detailed look at the changes included in this release.

70

Chapter 32. Admin

This section is relevant for everyone marked in the OpenEngSB Team List as administrator. If you

require anything of the following points to be done please write to the openengsb-dev mailing list or

send a mail directly to one of the administrators.

32.1. Infrastructure

This section describes the OpenEngSB infrastructure and the relevant parts to manage it.

32.1.1. OpenEngSB Infrastructure Server

The main server hosting our selfmaintained infrastructure runs Ubuntu Linux and is hosted under the

domain "openengsb.org". The server is mainained remotely via SSH [pw:server].

An apache2 server processes all requests and forwards it to the corresponding service. The config-

file that connects the subdomains to the corresponding services is located in /etc/apache2/sites-

enabled/000-default.

This forwards point to a directory in /var/www that redirects the browser to the correct page (like

build.openengsb.org -> build.openengsb.org/hudson) The tomcat-server for the homepage is located

in /var/opt/tomcat. JIRA is located in /var/opt/atlassian-jira-enterprise-4.1.2/ Further all passwd-files

to control http-access are located in /etc/apache2

32.1.2. OpenEngSB Build

Hudson is accessible at http://build.openengsb.org. To become an admin create account and write mail

to one of the current admins.

32.1.3. OpenEngSB Issuetracker

JIRA is accessible at http://issues.openengsb.org. To become an admin create account and write mail

to one of the current admins.

32.1.4. OpenEngSB git

The github is located at http://git.openengsb.org. To become an admin create a github-account (if you

don't have one) and write mail to one of the current admins.

32.1.5. OpenEngSB Maven

32.1.5.1. internal

The internal maven-repo is accessible at http://maven.openengsb.org. Use [pw:nexus] to login.

32.1.5.2. external

The external maven-repo hosting released artifacts is located at http://oss.sonatype.org. Use

[pw:maven] to login.

http://openengsb.org/team-list.html
http://build.openengsb.org
http://issues.openengsb.org
http://git.openengsb.org
http://maven.openengsb.org
http://oss.sonatype.org

Admin

71

32.1.6. OpenEngSB Mailinglist

To obtain admin-access for the mailing lists register google-account (if you don't have one), join

mailinglists and write mail to one of the current admins

32.2. Logo Locations and Upgrade

This section describes the locations of the logo and what have to be upgraded to the latest logo. The

following items are used in this section and are (should be) all available within openengsb/etc/branding.

• openengsb.png: The full logo of the OpenEngSB in png format. The size is not too important. At

every location used it is resized according to the requirements automatically.

• openengsb_small.png: A reduced version of the OpenEngSB logo. The most important thing with

this logo is that it have to be rectangular, since some cases require this.

• openengsb.ico: This is the openengsb_small.png logo convert to an ico file. Threfore scale the

openengsb_small.png. On unix install imagemagic and png2ico and follow the following steps.

Before you start upate openengsb_smal.png in etc/branding

convert -resize 64x64 openengsb_small.png openengsb64x64.png
convert -resize 32x32 openengsb_small.png openengsb32x32.png
convert -resize 16x16 openengsb_small.png openengsb16x16.png
png2ico openengsb.ico openengsb16x16.png openengsb32x32.png openengsb32x32.png

32.2.1. External Infrastructure

This section describes which tools have to be upgraded and how this is done.

• Jira: Use openengsb_small.png as project logo.

• Twitter: Use openengsb.png as background and openengsb_small.png as logo.

• Github: Upgrade gravatar with openengsb_icon.png to upgrade openengsb@gmail.com.

• Facebook: Use openengsb.png for the group logo.

• Google Groups: Use openengsb_small.png for the group logos (in all three lists).

32.2.2. Internal Management Application

This section covers how to upgrade the logos in the internal management application located within

openengsb/ui/web.

• src/main/resources/openengsb.png (openengsb.png)

• src/main/resources/openengsb.ico (openengsb.ico)

32.2.3. Documentation

Manual, Maven Site and all additional presentations of the OpenEngSB are covered within this section

describing how and where to upgrade a logo.

http://openengsb.org/community/mailinglists.html

Admin

72

• docs/homepage/src/site/resources/images/openengsb.png uses openengsb.png to present a banner

on the homepage.

• docs/skin/src/main/resources/images/openengsb.ico contains openengsb.ico which is presented as

favicon on openengsb.org

• docs/manual/src/main/docbx/resources/images/openengsb.png contains openengsb.png which

should be presented on the html and pdf documentation of the OpenEngSB.

73

Chapter 33. Project Roles

This section describes the how the roles in the OpenEngSB Project are defined.

Basically the OpenEngSB is, from it's structure exactly as any Apache Software Foundation (ASF)

project. We split the different roles in User, Contributor, Commiters and Project Comitee Members. In

addition the OpenEngSB is developed in a metocracy, similar to ASF the persons doing the most affect

the project most. Basically the only reason we're not an ASF project is that we prefer using GIT :)

33.1. Users

Users are persons using the OpenEngSB.

This group does not contribute in the OpenEngSB project in any way. They download the OpenEngSB,

use it and may ask questions in the IRC channel or on the mailing lists.

33.2. Contributors

Contributors are users who contribute ideas, issues or pull requests.

Basically the only difference between users and contributors are that they actively contribute to the

OpenEngSB in one or another way. Those users have full rights on the issue tracker after they've

created an account but are not allowed to access the OpenEngSB core repos with write karma.

33.3. Commiters

Commiters have the same rights as contributors with the difference that they have wirte access to the

OpenEngSB Github repositories. They are allowed to directly push changes, but also should review

pull-requests.

To become a commiter a person have to be active on different parts of the OpenEngSB. Provide

patches, write documentation, answer on the user mailing list and the IRC channel. If a contributor is

active for an undefined time the project comitee members may vote to add a contributor to a commiter.

33.4. Project Comitee Members

Project comitee members have the same rights as commiters, with the difference that they are

responsible for the project. PMCs relese the OpenEngSB, vote contributors to commiters and

commiters to PMCs.

Every commiter can become a PMC through active contribution to the OpenEngSB.

74

Chapter 34. Java Coding Style

34.1. Sun Coding Guidelines

The OpenEngSB Coding Guidelines are based upon the Code Conventions for the Java Programming

Language. There are some additions and deviations for this project.

34.1.1. Line length

A line length of 80 was standard 10 years ago, but with increasing screen size and resolution a length

of 120 is more reasonable.

34.1.2. Wrapping

Use the auto-formatter of your IDE. Import the Eclipse Formatter file.

34.1.3. Number of declarations per line

Only one declaration per line is allowed.

34.1.4. Declaration placement

Declare variables where they are needed. It's easier to read and restricts the scope of variables. Don't

overshadow variables.

34.1.5. Blank lines

The body of a method should not start with a blank line.

34.2. General

34.2.1. File format

Every Java file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of

four spaces, tab-stops are not allowed.

34.2.2. Header

Every source file has to start with this header:

/**

 Licensed to the Austrian Association for Software Tool Integration (AASTI)

 under one or more contributor license agreements. See the NOTICE file

 distributed with this work for additional information regarding copyright

 ownership. The AASTI licenses this file to you under the Apache License,

 Version 2.0 (the "License"); you may not use this file except in compliance

 with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
http://dev.openengsb.org/resources/eclipse/formatter.xml

Java Coding Style

75

 Unless required by applicable law or agreed to in writing, software

 distributed under the License is distributed on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 See the License for the specific language governing permissions and

 limitations under the License.

 */

34.2.3. Duplication

Code duplication has to be avoided at all costs.

34.2.4. Use guards

Guards are a possibility to reduce the amount of nesting. Heavily nested code is much harder to read.

Bad:

public void foo() {

 if (conditionA) {

 if (conditionB) {

 if (conditionC) {

 // do some work

 }

 } else {

 throw new MyException();

 }

 }

}

Good:

public void foo() {

 if (!conditionA) {

 return;

 }

 if (!conditionB) {

 throw new MyException();

 }

 if (!conditionC) {

 return;

 }

 // do some work

}

34.2.5. Keep methods short

Methods longer than 40 lines are candidates for refactoring. A method should only do one thing and

has to be easily understandable. The number of arguments should be minimized. A method should

only be at a single level of abstraction.

34.2.6. Use enums

Prefer typesafe enumerations over integer constants.

Java Coding Style

76

34.2.7. Avoid use of static members

Static members are a sign of a design error because they are like global variables. It's fine if you declare

a constant as final abstract of course.

34.2.8. Use fully qualified imports

Don't import org.example.package.*, instead import the needed classes.

34.2.9. Never declare implementation types

Use interfaces or the abstract base class instead of concrete implementation classes where possible.

Don't write:

ArrayList<String> names = new ArrayList<String>();

Instead use the interface name:

List<String> names = new ArrayList<String>();

This is especially important in method signatures.

34.2.10. SerialVersionUID

Don't declare serialVersionUID just because your IDE tells you. Have a good reason why you need

it. This can cause bugs that are hard to detect.

34.2.11. Restrict scope of suppressed warnings

If you have to suppress a warning make sure you give it the smallest possible scope. This means you

should never annotate a whole class with @SuppressWarnings. A method may be acceptable but you

should try to annotate the problematic statements instead.

34.2.12. Use String.format()

Use String.format() instead of long concatenation chains which are hard to read.

34.2.13. Array declaration style

Always use

 Type[] arrayName;

instead of the C-like

Type arrayName[];

34.2.14. Comments

Don't make funny comments, be professional. All comments have to be in English. Comment what

methods do, not how they do it. Do not comment what is already stated in code.

Java Coding Style

77

34.3. Naming

34.3.1. Interfaces

Interfaces are not marked by starting their names with I. This exposes more information than necessary

and is not Java-like.

34.3.2. Don't abbreviate

Do not use abbreviations if it's not a project wide standard. Long method names are preferable to

inconsistency. With automatic code completion this isn't a problem anyway.

34.4. No clutter

• Exception/Log Messages have to be concise. Don't end messages with "...".

• Don't overuse FINAL, use it where you have a good reason something has to be final. Although it

doesn't hurt to declare everything as final it clutters the code.

• Don't use history tables in source files. Use the SCM system if you are interested in the changes

of a file.

• Don't use the JavaDoc author tag. Also use the SCM system.

• Don't declare unnecessary constructors, especially the empty default constructor.

• Don't make implicit calls explicitly, i.e. calling super(); in every constructor.

• Don't specify modifiers that are implicit, i.e. don't make methods in interfaces public abstract.

• Don't initialize fields with null, they are automatically initialized with null.

• Don't use banners in comments.

• Don't use closing brace comments, i.e. } // end if, they are a sign of too long methods.

• Don't comment out code and commit it. This confuses programmers why it is there. Simply delete

it, it's still present in the SCM history.

34.5. Exception Handling

• Don't log and throw. Either a exception should be logged or thrown to be processed at a more

appropriate place.

• Don't swallow exceptions silently. If you have to do it, you have to make a comment stating the

reason.

• Use runtime exceptions where possible.

• Wrap exceptions in a RuntimeException if you don't want to specify the Exception in your method

signature and you can't handle it.

Java Coding Style

78

• Write meaningful exception message.

34.6. Tests

34.6.1. General

• Make use of JUnit 4 features, e.g. @Test(expected = SomeException.class)

• Tests should not output anything. They have to be automatically verified.

• Don't catch exceptions just to fail manually. Declare the method to throw the exception.

• Install a shutdown hook for test data files. This assures that they will be deleted and the project

remains in a clean state.

• Use Mockito for mocking.

• Tests should have descriptive method names. It should be deducible what will be tested. Bad:

testError(). Good: invalidInMessage_ShouldReturnErrorResponse().

34.6.2. Naming Scheme

The Maven profiles for running the tests are configured to filter based on the naming of the test class.

The package layout is just a further convenience for the developer for running the tests manually.

• Unit Tests test one class/method/feature in isolation from their dependencies by using test doubles

as replacement. They should be fast and need no special environment setup for execution.

• Filenames end with Test.java

• Located in the normal package structure, i.e. outer.project.package.inner.project.package

• Integration Tests combine individual software modules to test their interaction with each other. They

do not need a special environment setup for execution.

• Filenames end with IT.java

• Located in outer.project.package.it.inner.project.package

• User Tests need a special execution environment and thus are not run automatically during any

maven phase.

• Filenames end with UT.java

• Located in outer.project.package.ut.inner.project.package

34.7. XML Formatting

34.7.1. File Format

Every XML file has to be UTF-8 encoded and has to use UNIX line endings. Indentations consist of

TWO spaces, tabstops are not allowed. The line length shouldn't exceed 120 characters.

http://code.google.com/p/mockito/

Java Coding Style

79

34.7.2. Eclipse Settings

If you use Eclipse please choose these settings for your OpenEngSB workspace:

Eclipse XML Settings

34.7.3. Recommended Readings

• Clean Code, Robert C. Martin, 2008

• Effective Java Second Edition, Joshua Bloch, 2008

• 7 tips on writing clean code

http://www.garshol.priv.no/blog/105.html

80

Chapter 35. Writing Code

This chapter is intended for developers. There are no special prerequisites. Each part describes what

a developer has to look at in specific for the OpenEngSB.

35.1. Maven POM files in the OpenEngSB

Following the guidelines of Maven Central, how a pom should be designed it is required to add the

following tags into every and each pom file:

• modelVersion

• groupId

• artifactId

• version

• packaging

• name

• description

• url

• licenses

• scm/url

• scm/connection

• scm/developerConnection

The following listings shows an example of these params for a typical OpenEngSB pom.

<modelVersion>4.0.0</modelVersion>

 <groupId>org.openengsb.core</groupId>

 <artifactId>openengsb-core-parent</artifactId>

 <version>1.1.0-SNAPSHOT</version>

 <name>OpenEngSB :: Core :: Parent</name>

 <packaging>pom</packaging>

 <description>Parent project for all OpenEngSB Core classes</description>

 <url>http://www.openengsb.org</url>

 <licenses>

 <license>

 <name>Apache 2</name>

 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>

 <distribution>repo</distribution>

 </license>

 </licenses>

 <scm>

 <connection>scm:git:git://github.com/openengsb/openengsb.git</connection>

 <developerConnection>scm:git:git@github.com:openengsb/openengsb.git</developerConnection>

 <url>http://github.com/openengsb/openengsb</url>

 </scm>

Writing Code

81

35.2. Using the same dependencies as the OPENENGSB

To use the same dependencies as the OPENENGSB project you have to import the shared-plugin-

settings project into your dependency management section:

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.openengsb.build</groupId>

 <artifactId>shared-plugin-settings</artifactId>

 <version>Version of OPENENGSB you use</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

This will import all the dependencies with the correct versions into the dependencyManagement

section. You can now define the dependencies shared between your project and OPENENGSB in your

dependencies section without setting the version.

35.3. Making UI Tests Localizable

If you want to test if specific text is shown in the UI extend LocalisedTest in your UI Test. The

constructor automatically loads the correct ResourceBundle and via localization(String resourcename)

you can load a localized version of a specific resource string. The default locale is used as to match

the locale used by WicketTester.

35.4. How to write tests

The following listings show how to write tests according to the OpenEngSB coding style

The name of the test method has to describe what is going to be tested. After the "_" is described what

are the expected results.

@Test

public void testBehaviorX_shouldReturnY() {

 //CODE

}

In addition to the normal behaviour the coder should also provide a test for the failure behavior.

@Test(expected = BehaviorException.class)

public void testBehaviorX_shouldThrowException() {

//CODE

}

35.4.2. Technologies for writing test, and how to use them

The OpenEngSB developers decided to use following testing tools:

Writing Code

82

Caution
Instead of using Assert.assertThat(....) or Mockito.mock(...) we use the static import

variant: assertThat(...) and mock(...)

• Asserts: We use Hamcrest instead of JUnit. A simple example how to use Hamcrest assertions is

given in the following listing:

 import static org.hamcrest.MatcherAssert.assertThat;

 import static org.hamcrest.MatcherAssert.is;

 [...]

 assertThat(realValue, is(expectedValue));

• Mocking: We use mockito. A simple example how to use Mockito in a correct way is given in the

following listing:

 import static org.mockito.Mockito.mock;

 import static org.mockito.Mockito.when;

 import static org.mockito.Mockito.times;

 [...]

 //mocking code

 ExampleMock exampleMock = mock(ExampleMock.class);

 when(exampleMock.methodX()).thenReturn(y);

 [...] //testing code

 //verification

 verify(manager, times(1).methodX(Y);

http://code.google.com/p/hamcrest/wiki/Tutorial
http://code.google.com/p/mockito/

83

Chapter 36. Recommended Eclipse Plug-ins for
Developers

The following plug-ins for Eclipse are recommended for the development of the OpenEngSB. If not

otherwise stated we recommend the latest stable version of the plug-ins. For information about the

basic setup of this plug-ins please take a look into the corresponding plug-in documentation. This

section only gives hints for setup if it is OpenEngSB specific.

36.1. Properties Editor

The properties editor can be used to edit the properties files used for internationalization and

automatically escapes special characters, like the German "ü".

36.2. Spring IDE

Spring IDE adds support for the Spring Framework to the Eclipse platform. Especially editing the

XML configuration files becomes a lot easier, as this plug-in provides code completion and other

useful features.

36.3. Eclipse CS

The checkstyle plugin integrates checkstyle into Eclipse. Conformance with checkstyle criteria has to

be checked before each push to the repository, so integrating the check into the IDE helps developers

to already conform to the checkstyle criteria during development. You have to configure the plug-in

to use our checkstyle configuration file, which can be found here

36.4. Drools

The Drools plug-in is handy if you want to edit workflows or Drools rules, because it provides syntax

highlighting for rules and a graphical editor for workflows.

http://marketplace.eclipse.org/content/properties-editor-0
http://marketplace.eclipse.org/content/spring-ide
http://marketplace.eclipse.org/content/checkstyle-plug
https://github.com/openengsb/openengsb-maven-plugin/raw/master/src/main/resources/checkstyle/checkstyle.xml
http://marketplace.eclipse.org/content/jboss-drools

84

Chapter 37. Writing Documentation

This chapter is intended for developers who write documentation. There are no special prerequisites.

Part one describes how a chapter should be structured. Part two discusses how domains and connectors

should be document. Part three describes how Docbook is used at OpenEngSB.

37.1. General Documentation Guidelines

A chapter should consist of these parts:

Introduction

It should explained who the target audience for this chapter is and in what case this chapter should

be read. There should also be a basic summary of what this chapter is about.

Prerequisites

Any prerequisites should be listed. Link to the appropriate chapter or to a website to give the reader

a good starting point in case they need to learn something else first.

Context

In the context section the reader should learn in which context this chapter is applicable. If

necessary abbrevations and acronyms used in this chapter can be explained here.

Content

The actual content of this chapter. This should be structured in as many sections as appropriate.

Example

If possible there should be an example to illustrate the points of the chapter.

Common Problems

If there are some known pitfalls or bugs they should be described in this section.

Closing Remarks

In this section the content of the chapter can be summarized once more. The reader should get

information on what to do next.

It is not necessary that every part is a docbook section. Parts can be combined if it seems appropriate.

37.2. Document a domain or connector

37.2.1. Domain

Each domain gets their own directory in the user guide at domains/<the-domain-name>. The domain-

specific documentation should be put in a file named domain.xml. The directory will be used to

document connectors for the domain.

The documentation of a domain should at least consist of the following parts:

Description

Describe briefly what the purpose of the Domain is.

Writing Documentation

85

Functional interface

The link to the actual java interface (and any domain models used in the interface) at Github. The

domain interface and models should have enough Javadoc to explain the usage.

Events

If the domain adds new events to the OpenEngSB, the link to the events package at Github should

be provided. The meaning of each events should be documented through the Javadoc at the actual

class.

37.2.2. Connector

A connector for a specific domain should be documented in the domain-specific directory. Add a new

file with the unique name of the connector.

The documentation of a connector should at least conisst of the following parts:

Description

Provide a description of the external tool and its purpose.

External tool configuration

A section on how to configure the actual external tool for usage with the OpenEngSB has to be

provided.

Support for domain interface

Any deviation to the provided functionality of the domain should be documented. E.g a connector

may only implement parts of the domain interface.

37.3. Using Docbook

This is not a DocBook manual but rather an explanation what type of docbook tags are used in this

documentation. If you are new to DocBook you should read DocBook 5: The Definitive Guide.

37.3.1. Tags

DocBook has many tags to choose from. This list describes which tags should be used in which cases.

Tag Description Example

<command> Used for executables Type <command>ls</command> to get the

contents of the directory.

<envar> Used for environment variables PATH

<emphasis> Used to emphasize words in a sentence This chapter explains only the very basics of

Git.

<filename> Used for files and directories You can set environment variables in

<filename>~/.profile</filename>.

<guibutton> Used to describe buttons in a GUI Press <guibutton>Next</guibutton> to

continue with the process.

http://www.docbook.org/tdg5/en/html/docbook.html

Writing Documentation

86

Tag Description Example

<guilabel> Used to describe labels in a GUI Select <guilabel>Copy projects into

workspace</guilabel>

<guimenu> Used to describe menus in a GUI Go to <guimenu>File</guimenu>,

<guimenu>Import...</guimenu>.

<itemizedlist> Used for bullet type lists <itemizedlist><listitem>One</

listitem><listitem>Two</listitem></

itemizedlist>

<listitem> Used for entries in a list <itemizedlist><listitem>One</

listitem><listitem>Two</listitem></

itemizedlist>

<option> Used for options of commands <command>mvn</command>

<option>clean</option> is used to clean the

project.

<orderedlist> Used for numbered lists <orderedlist><listitem>One</

listitem><listitem>Two</listitem></

orderedlist>

<para> Used for paragraphs <para>This is a paragraph.</para>

<programlisting> Used to display code (e.g. XML or

Java). Generally it is a good idea to

wrap the contents of this tag in a

CDATA section.

<programlisting><!

[CDATA[System.out.println("Hello,

world!");]]<</programlisting>

<replaceable> Used for placeholders in examples Type <command> <replaceable>/path/to/

maven</replaceable>

<link> Used for links to external resources You should read <link xlink:href="http://

www.docbook.org/tdg5/en/html/

docbook.html">DocBook 5: The Definitive

Guide</link>.

<xref> Used for internal links This inserts a link to the description

of the the OpenEngSB <xref

linkend="architecture" />.

<userinput> Used for data which is entered by the

user

Type <userinput>n</userinput> to

overwrite the default values.

<warning> Used for warnings about a chapter <warning><para>This chapter is out of

date.</para></warning>

37.3.1.1. Including an image

Images can be included in this way:

<mediaobject>

Writing Documentation

87

 <imageobject>

 <imagedata id="new" fileref="graphics/testclient_message.png"

 format="png" width="400" align="center" />

 </imageobject>

 <caption>Messaging</caption>

</mediaobject>

37.3.1.2. Using a table

There are two types of tables. Normal tables (<table>) and informal tables (<informaltable>)which

don't have a caption. Using informal tables should be fine most of the time. Example:

<informaltable>

 <colgroup>

 <col width="50" />

 <col width="100" />

 </colgroup>

 <thead>

 <tr>

 <td>

 Name

 </td>

 <td>

 Description

 </td>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>

 table

 </td>

 <td>

 A table with a caption

 </td>

 </tr>

 <tr>

 <td>

 informaltable

 </td>

 <td>

 A table without a caption

 </td>

 </tr>

 </tbody>

</informaltable>

37.3.1.3. Generating the documentation

To build the documentation maven with some plugins is used. The full documentation can be generated

in one simple step:

cd docs
mvn clean install -Pdocs

The documentation can be found in docs/target/docbkx in HTML and PDF format.

	OpenEngSB Manual
	Table of Contents
	Part I. Introduction
	Chapter 1. How to read the Manual
	Chapter 2. What is the Open Engineering Service Bus
	Chapter 3. When to use the OpenEngSB
	3.1. The OpenEngSB as Base Environment
	3.2. Reusing integration Components and Workflows
	3.3. Management Environment
	3.4. Simple Development and Distribution Management
	3.5. Simple Plug-Ins and Extensions

	Part II. Tutorials
	Chapter 4. HowTo - Create a connector for an already existing domain for the OpenEngSB
	4.1. Goal
	4.2. Time to Complete
	4.3. Prerequisites
	4.4. Step 1 - Use the archetype
	4.5. Step 2 - Add the dependencies
	4.6. Step 3 - Configure the connector
	4.7. Step 4 - Implement the connector
	4.8. Step 5 - Spring Setup and Internationalization
	4.9. Step 6 - Start the OpenEngSB with your Connector
	4.10. Step 7 - Test the new connector

	Chapter 5. HowTo - Interact with the OPENENGSB Remotely
	5.1. Using JMS proxying
	5.1.1. Proxying internal Connector calls
	5.1.1.1. HowTo call an external service via proxies

	5.1.2. Calling internal Services
	5.1.3. Examples
	5.1.3.1. Connect With Python
	5.1.3.2. Connect With CSharp
	5.1.3.3. Connect With Perl

	Part III. OpenEngSB Framework
	Chapter 6. Quickstart
	6.1. Writing new projects using the OpenEngSB
	6.2. Writing Domains for the OpenEngSB
	6.3. Writing Connectors for the OpenEngSB

	Chapter 7. Architecture of the OpenEngSB
	7.1. OpenEngSB Enterprise Service Bus (ESB)
	7.2. OpenEngSB Infrastructure
	7.3. OpenEngSB Components
	7.4. OpenEngSB Tool Domains
	7.5. Client Tools (Service Consumer)
	7.6. Domain Tools (Service Provider)
	7.7. Domain- and Client Tool Connectors

	Chapter 8. Context Management
	8.1. Wiring services

	Chapter 9. Persistence in the OpenEngSB
	Chapter 10. Security in the OpenEngSB
	10.1. Usermanagement
	10.2. Access control
	10.3. Authentication

	Chapter 11. Workflows
	11.1. Workflow service
	11.2. Rulemanager
	11.3. Processes

	Chapter 12. Taskbox
	12.1. Core Functionality
	12.2. UI Functionality

	Chapter 13. External Domains and Connectors
	13.1. Proxying
	13.1.1. Proxying internal Connector calls

	Chapter 14. Deployer services
	14.1. Connector configuration
	14.1.1. Root services

	Chapter 15. OpenEngSB Platform

	Part IV. OpenEngSB Available Domains & Connectors
	Chapter 16. Notification Domain
	16.1. Description
	16.2. Functional Interface
	16.3. Connectors
	16.3.1. Email Connector
	16.3.1.1. External Tool Configuration

	Chapter 17. SCM Domain
	17.1. Description
	17.2. Functional Interface
	17.3. Connectors
	17.3.1. Git Connector
	17.3.1.1. External Tool Configuration

	Chapter 18. Issue Domain
	18.1. Description
	18.2. Functional Interface
	18.3. Connectors
	18.3.1. Trac Connector
	18.3.1.1. External Tool Configuration

	18.3.2. Jira Connector
	18.3.2.1. External Tool Configuration

	Chapter 19. Report Domain
	19.1. Description
	19.2. Functional Interface
	19.3. Connectors
	19.3.1. Plaintext Report Connector
	19.3.1.1. External Tool Configuration

	Chapter 20. Build Domain
	20.1. Description
	20.2. Functional Interface
	20.3. Connectors

	Chapter 21. Test Domain
	21.1. Description
	21.2. Functional Interface
	21.3. Connectors

	Chapter 22. Deploy Domain
	22.1. Description
	22.2. Functional Interface
	22.3. Connectors

	Chapter 23. Auditing Domain
	23.1. Description
	23.2. Functional Interface
	23.3. Connectors
	23.3.1. Memory Auditing Connector

	Chapter 24. Appointment Domain
	24.1. Description
	24.2. Functional Interface

	Chapter 25. Contact Domain
	25.1. Description
	25.2. Functional Interface

	Chapter 26. Multi-Domain Connectors
	26.1. Connectors
	26.1.1. Maven Connector
	26.1.1.1. External Tool Configuration

	Part V. OpenEngSB Commiters & Contributors
	Chapter 27. Getting Started as a Developer
	27.1. Getting comfortable with the infrastructure
	27.1.1. Mailing Lists
	27.1.2. Jira Issue Tracker
	27.1.3. Code Repository
	27.1.4. Maven Repository
	27.1.5. Build Server

	27.2. Prerequisites
	27.2.1. Installing Git
	27.2.2. Installing Maven

	27.3. Starting OpenEngSB
	27.4. Using Eclipse
	27.5. Using Other IDEs than Eclipse
	27.6. Git Documentation
	27.6.1. Usage
	27.6.2. Github
	27.6.3. Starting up and configure
	27.6.4. Contributor Workflow
	27.6.5. Commiter Workflow
	27.6.6. Additional Rules

	27.7. Useful Tools
	27.7.1. openengsb-maven-plugin
	27.7.1.1. Configuring the openengsb-maven-plugin for your project
	27.7.1.2. Purpose of the openengsb-maven-plugin
	27.7.1.3. Changing the default configuration of the mojos
	27.7.1.4. Available Goals

	Chapter 28. How To Create an Internal Connector
	28.1. Prerequisites
	28.2. Creating a new connector project
	28.2.1. Using the Maven Archetype
	28.2.2. Using mvn openengsb:genConnector

	28.3. Project Structure
	28.4. Integrating the Connector into the OpenEngSB environment

	Chapter 29. How To Create an Internal Domain
	29.1. Prerequisites
	29.2. Creating a new domain project
	29.2.1. Using the Maven Archetype
	29.2.2. Using mvn openengsb:genDomain
	29.2.3. Project structure

	29.3. Components
	29.4. Connectors

	Chapter 30. Prepare and use Non-OSGi Artifacts
	30.1. Create Wrapped Artifacts
	30.2. Tips and Tricks

	Chapter 31. Release and Release Process
	31.1. Releases and the OpenEngSB
	31.2. Git Branches
	31.2.1. New Feature Workflow
	31.2.2. Milestone Releases
	31.2.3. Release Candidates
	31.2.4. Final and Support Releases

	31.3. Configure Maven
	31.4. Adapt Jira
	31.5. Perform the release
	31.6. Spread the News
	31.7. Prepare Changelog
	31.7.1. General Description
	31.7.2. Highlights
	31.7.3. Details

	Chapter 32. Admin
	32.1. Infrastructure
	32.1.1. OpenEngSB Infrastructure Server
	32.1.2. OpenEngSB Build
	32.1.3. OpenEngSB Issuetracker
	32.1.4. OpenEngSB git
	32.1.5. OpenEngSB Maven
	32.1.5.1. internal
	32.1.5.2. external

	32.1.6. OpenEngSB Mailinglist

	32.2. Logo Locations and Upgrade
	32.2.1. External Infrastructure
	32.2.2. Internal Management Application
	32.2.3. Documentation

	Chapter 33. Project Roles
	33.1. Users
	33.2. Contributors
	33.3. Commiters
	33.4. Project Comitee Members

	Chapter 34. Java Coding Style
	34.1. Sun Coding Guidelines
	34.1.1. Line length
	34.1.2. Wrapping
	34.1.3. Number of declarations per line
	34.1.4. Declaration placement
	34.1.5. Blank lines

	34.2. General
	34.2.1. File format
	34.2.2. Header
	34.2.3. Duplication
	34.2.4. Use guards
	34.2.5. Keep methods short
	34.2.6. Use enums
	34.2.7. Avoid use of static members
	34.2.8. Use fully qualified imports
	34.2.9. Never declare implementation types
	34.2.10. SerialVersionUID
	34.2.11. Restrict scope of suppressed warnings
	34.2.12. Use String.format()
	34.2.13. Array declaration style
	34.2.14. Comments

	34.3. Naming
	34.3.1. Interfaces
	34.3.2. Don't abbreviate

	34.4. No clutter
	34.5. Exception Handling
	34.6. Tests
	34.6.1. General
	34.6.2. Naming Scheme

	34.7. XML Formatting
	34.7.1. File Format
	34.7.2. Eclipse Settings
	34.7.3. Recommended Readings

	Chapter 35. Writing Code
	35.1. Maven POM files in the OpenEngSB
	35.2. Using the same dependencies as the OPENENGSB
	35.3. Making UI Tests Localizable
	35.4. How to write tests
	35.4.1.
	35.4.2. Technologies for writing test, and how to use them

	Chapter 36. Recommended Eclipse Plug-ins for Developers
	36.1. Properties Editor
	36.2. Spring IDE
	36.3. Eclipse CS
	36.4. Drools

	Chapter 37. Writing Documentation
	37.1. General Documentation Guidelines
	37.2. Document a domain or connector
	37.2.1. Domain
	37.2.2. Connector

	37.3. Using Docbook
	37.3.1. Tags
	37.3.1.1. Including an image
	37.3.1.2. Using a table
	37.3.1.3. Generating the documentation

