openTCS

Developer’s Guide

The openTCS developers

Version 5.3.0

Table of Contents

1. Development with openTCS in general
1.1. System requirements
1.2. Available artifacts and API compatibility
1.3. Third-party dependencies
1.4. Modularity and extensibility
1.5. Logging
1.6. Working with the openTCS source code
1.7. openTCS kernel APIs
2. The kernel’s Java API
2.1. Acquiring service objects
2.2. Working with transport orders
2.2.1. A transport order’s life cycle
2.2.2. Structure and processing of transport orders

© 00 3 O O U b ok W W W, R

2.2.3. How to create a new transport order
2.2.4. How to create a transport order that sends a vehicle to a point instead of a location 10

2.2.5. Using order sequences 11
2.2.6. How to withdraw a transport order that is currently being processed 13
2.2.7. How to withdraw a transport order via a reference on the vehicle processing it 13

2.3. Using the event bus 13

3. Generating an integration project 15
4. Customizing and extending the kernel application 16
4.1. Guice modules 16
4.2. Replacing default kernel components 16
4.3. Developing vehicle drivers 17
4.3.1. Classes and interfaces for the kernel 17
4.3.2. Classes and interfaces for the control center application 18
4.3.3. Steps to create a new vehicle driver 19
4.3.4. Registering a vehicle driver with the kernel 19

4.4. Sending messages to communication adapters 20
4.5. Acquiring data from communication adapters 20
4.6. Executing code in kernel context 21

5. Customizing and extending the control center application 23
5.1. Guice modules 23
5.2. Registering driver panels with the control center 23

6. Customizing and extending the Model Editor and the Operations Desk applications 25
6.1. Guice modules 25
6.2. How to create a plugin panel for the Operations Desk client 25

6.3. How to create a location/vehicle theme for openTCS 26

7. Supplementing configuration sources
8. Translating the user interfaces
8.1. Extracting default language files
8.2. Creating a translation
8.3. Integrating a translation

8.4. Updating a translation

27
28
28
29
29
30

Chapter 1. Development with openTCS in
general

1.1. System requirements

The openTCS source code is written in Java. To compile it, you need a Java Development Kit (JDK)
13. To run the resulting binaries, you need a Java Runtime Environment (JRE) 13. All other required
libraries are included in the openTCS distribution or will be downloaded automatically when
building it from source code.

1.2. Available artifacts and API compatibility

The openTCS project publishes artifacts for releases via the Maven Central artifact repository, so
you can easily integrate them with build systems such as Gradle or Maven. In Gradle build scripts,
for example, use something like the following to integrate an openTCS library:

repositories {
mavenCentral()

}

dependencies {
compile group: 'org.opentcs', name: '${ARTIFACT}', version: '5.3.0'

}

Set the version number of the openTCS release you actually want to work with, and select the
appropriate ${ARTIFACT} name from the following table:

Table 1. Artifacts published by the openTCS project

Artifact name API compatibility Content
between minor
releases
opentcs-api-base Yes The base API for clients and extensions. This is

what most developers probably want to use.

opentcs-api-injection Yes API interfaces and classes used for dependency
injection within the kernel and client
applications. This is required in integration
projects customizing these applications, e.g.
adding components like vehicle driver

implementations.

opentcs-common No A collection of utility classes used by openTCS
components.

opentcs-impl- No An implementation of the base API’s

configuration-cfgdj configuration interfaces based on cfg4;.

https://repo1.maven.org/maven2/

Artifact name API compatibility Content
between minor

releases

opentc§—ke rnel- No A kernel extension providing the web API

extension-http- implementation.

services

opentcs-kernel- No A kernel extension providing the RMI interface

extension-rmi-services implementation

opentc§—ke rnelt _ No A Kkernel extension providing the statistics

extension-statistics collection implementation.

opentcs-plantoverview- No The base data structures and components used

base by the Model Editor and the Operations Desk
that don’t require third-party libraries.

opentcs-plantoverview- No A collection of classes and components

common commonly used by the Model Editor and the
Operations Desk.

opentcs-plantoverview- No The load generator panel implementation for

panel-loadgenerator the Operations Desk.

opentcs-plantoverview- No The resource allocation panel implemenation

panel- _ for the Operations Desk.

resourceallocation

0pentCS—p1<‘_int(_)ver view- No The statistics panel implementation for the

panel-statistics Operations Desk.

opentcs-plantoverview- No The default themes implementation for the

themes-default Operations Desk.

opentcs-commadapter- No A very basic vehicle driver simulating a virtual

loopback vehicle.

opentcs-strategies- No The default implementations of strategies that

default are used by the kernel application.

opentcs-kernel No The kernel application.

opentces- No The Kernel Control Center application.

kernelcontrolcenter

opentcs-modeleditor No The Model Editor application.

opentcs-operationsdesk No The Operations Desk application.

Note that only the basic API libraries provide a documented API that the openTCS developers try to
keep compatible between minor releases. (For these libraries, the rules of semantic versioning are
applied.) All other artifacts' contents can and will change regardless of any compatibility concerns,
so if you explicitly use these as dependencies and switch to a different version of openTCS, you may
have to adjust and recompile your code.

https://semver.org/

1.3. Third-party dependencies

The kernel and the client applications depend on the following external frameworks and libraries:

SLF4] (https://www.slf4j.org/): A simple logging facade to keep the actual logging
implementation replaceable.

* Google Guice (https://github.com/google/guice): A light-weight dependency injection framework.

Cfg4j (http://www.cfg4j.org/): A configuration library supporting binding interfaces.
* Google Guava (https://github.com/google/guava): A collection of small helper classes and
methods.

The kernel application also depends on the following libraries:

* JGraphT (https://jgrapht.org/): A library for working with graphs and using algorithms on them.

» Spark (https://sparkjava.com/): A framework for creating web applications.

* Jackson (https://github.com/FasterXML/jackson): Provides JSON bindings for Java objects.

The Model Editor and Operations Desk applications have the following additional dependencies:

* JHotDraw (https://github.com/wrandelshofer/jhotdraw): A framework for drawing graph
structures (like driving course models).

* Docking Frames (https://www.docking-frames.org/): A framework for docking and undocking of
GUI panels

For automatic tests, the following dependencies are used:

* JUnit (https://junit.org/): A simple unit-testing framework.
* Mockito (https://site.mockito.org/): A framework for creating mock objects.

* Hamcrest (http://hamcrest.org/): A framework for assertion matchers that can be used in tests.

The artifacts for these dependencies are downloaded automatically when building the applications.

1.4. Modularity and extensibility

The openTCS project heavily relies on Guice for dependency injection and wiring of components as
well as for providing plugin-like extension mechanisms. In the injection API, relevant classes can be
found in the package org.opentcs.customizations. For examples, see Customizing and extending the
kernel application, Customizing and extending the Model Editor and the Operations Desk
applications and Customizing and extending the control center application.

1.5. Logging

The code in the official openTCS distribution uses SLF4] for logging. Thus, the actual logging
implementation is easily interchangeable by replacing the SLF4] binding in the respective
application’s classpath. The kernel and client applications come with SLF4J’s bindings for
java.util.logging by default. For more information on how to change the actual logging

https://www.slf4j.org/
https://github.com/google/guice
http://www.cfg4j.org/
https://github.com/google/guava
https://jgrapht.org/
https://sparkjava.com/
https://github.com/FasterXML/jackson
https://github.com/wrandelshofer/jhotdraw
https://www.docking-frames.org/
https://junit.org/
https://site.mockito.org/
http://hamcrest.org/
https://github.com/google/guice
https://www.slf4j.org/

implementation, e.g. to use log4j, please see the SLF4] documentation.

1.6. Working with the openTCS source code

The openTCS project itself uses Gradle as its build management tool. To build openTCS from source
code, just run gradlew build from the source distribution’s main directory. For details on how to
work with Gradle, please see its documentation.

These are the main Gradle tasks of the root project you need to know to get started:

* build: Compiles the source code of all subprojects.

* release: Builds and packages all system components to a distribution in build/.

 clean: Cleans up everything produced by the other tasks.
To work with the source code in your IDE, see the IDE’s documentation for Gradle integration.
There is no general recommendation for any specific IDE. Note, however, that the openTCS source

code contains GUI components that have been created with the NetBeans GUI builder. If you want
to edit these, you may want to use the NetBeans IDE.

1.7. openTCS kernel APIs

openTCS provides the following APIs to interact with the kernel:

* The kernel’s Java API for both extending the kernel application as well as interfacing with it via
RMI. See The kernel’s Java API for details.

* A web API for interfacing with the kernel via HTTP calls. See the separate interface
documentation that is part of the openTCS distribution for details.

https://gradle.org/
https://docs.gradle.org/

Chapter 2. The kernel’s Java API

The interfaces and classes required to use the kernel API are part of the opentcs-api-base JAR file,
so you should add that to your classpath/declare a dependency on it. (See Available artifacts and
API compatibility.) The basic data structures for plant model components and transport orders you

will encounter often are the following:

Plant model \

Driving course mudel\

@Vehicle @Lucatiunl @Puintl @Path @LucatiunT‘ypel
AN

N\ N —a—

Peripheral jobs%;'lsport orders \

=

N
@ Peripheraldob @ Qrdersequence @Transpnnﬂrder

Figure 1. Basic data structures

The service interfaces that are most often interacted with to fetch and manipulate such data

structures are these:

@ TCS0bjectService

@ FeripheralService

l@ Pen;one(er..fobSeMcel

l@ Venic.reSeM'cel
JAY

l@ TrensponOrderSeMcel

@ Flant\iodelService

l@ mtemerPIenNoderSeMce] l@ InternalT rensponOro‘erSeMcel l@ .rnfernarl.femcreSeMcel l@ .rnfemerPen;onererbSeMcel l@ .rnfeme.rPenpnefeISeMce]

Figure 2. TCSObject-related service interfaces

A few more interfaces are available to interact with various parts of the kernel, as shown in the

following diagram:

@ QueryService @ PeripheralDispatcherSernvice @ DispatcherService @ RouterSernvice @ SchedulerService

?

@ InternalQueryService @ NotificationService

Figure 3. Additional service interfaces

Peripheral* are classes/interfaces related to experimental integration of peripheral
devices. These features are not documented in detail, yet, and developers using
any of them are on their own, for now.

2.1. Acquiring service objects

To use the services in code running inside the kernel JVM, e.g. a vehicle driver, simply request an
instance of e.g. PlantModelService to be provided via dependency injection. You may also work with
an instance of InternalPlantModelService here, which provides additional methods available only to
kernel application components.

To access the services from another JVM, e.g. in a client that is supposed to create transport orders
or to receive status updates for transport orders or vehicles, you need to connect to them via
Remote Method Invocation (RMI). The easiest way to do this is by creating an instance of the
KernelServicePortalBuilder class and letting it build a KernelServicePortal instance for you. (For
now, there isn’t much support for user management, so it is recommended to ignore the methods
that require user credentials.) After creating the KernelServicePortal instance, you can use it to get
service instances and fetch kernel events from it. See also the class documentation for
KernelServicePortalBuilder in the base API’s JavaDoc documentation.

KernelServicePortal servicePortal = new KernelServicePortalBuilder().build();

// Connect and log in with a kernel somewhere.
servicePortal.login("someHost", 1099);

// Get a reference to the plant model service...

PlantModelService plantModelService = servicePortal.getPlantModelService();
// ...and find out the name of the currently loaded model.

String modelName = plantModelService.getLoadedModelName();

// Poll events, waiting up to a second if none are currently there.
// This should be done periodically, and probably in a separate thread.
List<Object> events = servicePortal.fetchEvents(1000);

2.2. Working with transport orders

A transport order, represented by an instance of the class TransportOrder, describes a process to be
executed by a vehicle. Usually, this process is an actual transport of goods from one location to
another. A TransportOrder may, however, also just describe a vehicle’s movement to a destination

position and an optional vehicle operation to be performed.

All of the following are examples for "transport orders" in openTCS, even if nothing is actually
being transported:
* A classic order for transporting goods from somewhere to somewhere else:
a. Move to location "A" and perform operation "Load cargo" there.

b. Move to location "B" and perform operation "Unload cargo" there.

Manipulation of transported or stationary goods:
a. Move to location "A" and perform operation "Drill" there.
b. Move to location "B" and perform operation "Hammer" there.
* An order to move the vehicle to a parking position:
a. Move to point "Park 01" (without performing any specific operation).
* An order to recharge the vehicle’s battery:

a. Move to location "Recharge station" and perform operation "Charge battery" there.

2.2.1. A transport order’s life cycle

—

. When a transport order is created, its initial state is RAW.

2. A user/client sets parameters for the transport order that are supposed to influence the
transport process. These parameters may be e.g. the transport order’s deadline, the vehicle that
is supposed to process the transport order or a set of generic, usually project-specific properties.

3. The transport order is activated, i.e. parameter setup is finished. Its state is set to ACTIVE.

4. The kernel’s router checks whether routing between the transport order’s destinations is
possible at all. If yes, its state is changed to DISPATCHABLE. If routing is not possible, the transport
order is marked as UNROUTABLE and not processed any further.

5. The kernel’s dispatcher checks whether all requirements for executing the transport order are
fulfilled and a vehicle is available for processing it. As long as there are any requirements not
yet fulfilled or no vehicle can execute it, the transport order is left waiting.

6. The kernel’s dispatcher assigns the transport order to a vehicle for processing. Its state is
changed to BEING_PROCESSED.

o If a transport order that is being processed is withdrawn (by a client/user), its state first
changes to WITHDRAWN while the vehicle executes any orders that had already been sent to it.
Then the transport order’s state changes to FAILED. It is not processed any further.

o If processing of the transport order fails for any reason, it is marked as FAILED and not
processed any further.

o If the vehicle successfully processes the transport order as a whole, it is marked as FINISHED.
7. Eventually —after a longer while or when too many transport orders in a final state have

accumulated in the kernel’s order pool — the kernel removes the transport order.

The following state machine visualizes this life cycle:

~
(RAW ™y ' ACTIVE Y DISPATCHABLE \
tl’he order parameters “| The order parameters ?;gegrpéz:ezi;n?éggiEtzcrjeb\;alld.
are being set up. Y, \are set up. y, @rocessed.
/ s
(BEING_PROCESSED) R)
— - » The order was withdrawn. If a vehicle
E\h\éegﬂgrls processing was assigned to it, it is executing the
' A Qeﬂ—ouer commands already given.
UNROUTABLE Y [FINISHED Y [FAILED

U\JO complete route to process the

order with a vehicle was found.

Processing of the order could
not be finished successfully.

The order was processed
successfully.

Figure 4. Transport order states

2.2.2. Structure and processing of transport orders

@ Route I @ Route.Step
O path : Path

O costs : long 1 1*

o O sourcePoint : Point
/ O destinationPoint : Point
@ TransportOrder I @ DriveOrder 1 - h

Exists only if a route was B“

O state : TransportOrder. State -1 1% | O state : DriveOrder. State computed for a vehicle.
.. @ oo

@ DriveOrder.Destination

O destination : TCSObjectReference
O operation : String
O properties : Map<String, String>

Figure 5. Transport order classes

A transport order is created by calling TransportOrderService.createTransportOrder(). As its
parameter, it expects an instance of TransportOrderCreationTO containing the sequence of
destinations to visit and the operations a vehicle is supposed to perform there. The kernel wraps
each Destination in a newly-created DriveOrder instance. These DriveOrders are themselves wrapped
by the kernel in a single, newly-created TransportOrder instance in their given order.

Once a TransportOrder is being assigned to a vehicle by the Dispatcher, a Route is computed for each
of its DriveOrders. These Routes are then stored in the corresponding DriveOrders.

TransportOrder

L1
oV eOrder Driveord or

route |

I

D1

C
B
A
@)
Step Step Step

As soon as a vehicle (driver) is able to process a DriveOrder, the single Steps of its Route are mapped
to MovementCommands. These MovementCommands contain all information the vehicle driver needs to
reach the final destination and to perform the desired operation there.

@Lacatian

@ MovementCommand 1 May not be present if the point of the transport
order is only about moving the vehicle

to a different position.

\
@ Route.Step

1

O operation : 5tring
O properties | Map<=5String, String=
a...

O path : Path
O sourcePoint : Point
O destinationPoint : Paint

Figure 6. MovementCommand-related classes

The MovementCommands for the partial routes to be travelled are sent to the vehicle driver bit by bit.
The kernel only sends as many MovementCommandss in advance as is required for the vehicle driver to
function properly. It does this to maintain fine-grained control over the paths/resources used by all
vehicles. A vehicle driver may set the maximum number of MovementCommands it gets in advance by
adjusting its command queue capacity.

As soon as a DriveOrder is finished, the Route of the next DriveOrder is mapped to MovementCommands.
Once the last DriveOrder of a TransportOrder is finished, the whole TransportOrder is finished, as
well.

2.2.3. How to create a new transport order

// The transport order service instance we're working with
TransportOrderService transportOrderService = getATransportOrderServiceReference(

// The dispatcher service instance we're working with
DispatcherService dispatcherService = getADispatcherServiceReference();

// A list of destinations the transport order the vehicle is supposed
// to travel to:
List<DestinationCreationT0> destinations = new LinkedList<>();
// Create a new destination description and add it to the Tlist.
// Every destination is described by the name of the destination
// location in the plant model and an operation the vehicle is supposed
// to perform there:
destinations.add(new DestinationCreationTO("Some location name",

"Some operation"));
// Add as many destinations to the list like this as necessary. Then
// create a transport order description with a name for the new transport
// order and the list of destinations.
// Note that the given name needs to be unique.
TransportOrderCreationTO orderT0

= new TransportOrderCreationTO("MyTransportOrder",
destinations);

// Optionally, express that the actual/full name of the order should be
// generated by the kernel.
orderTO = orderTO.withIncompleteName(true);
// Optionally, assign a specific vehicle to the transport order:
orderTO = orderTO.withIntendedVehicleName("Some vehicle name");
// Optionally, set a deadline for the transport order:
orderTO = orderTO.withDeadline(Instant.now().plus(1, ChronoUnit.HOURS));

// Create a new transport order for the given description:
TransportOrder newOrder = transportOrderService.createTransportOrder(orderT0);

// Trigger the dispatch process for the created transport order.
dispatcherService.dispatch();

2.2.4. How to create a transport order that sends a vehicle to a point instead
of a location

10

// The transport order service instance we're working with
TransportOrderService transportOrderService = getATransportOrderServiceReference(

// The dispatcher service instance we're working with
DispatcherService dispatcherService = getADispatcherServiceReference();

// Create a list containing a single destination to a point.

// Use Destination.OP_MOVE as the operation to be executed:

List<DestinationCreationT0> destinations = new LinkedList<>();

destinations.add(new DestinationCreationTO("Some point name",

Destination.OP_MOVE));

// Create a transport order description with the destination and a

// unique name and assign it to a specific vehicle:

TransportOrderCreationTO orderTO

= new TransportOrderCreationTO("MyTransportOrder",
destinations)

.withIntendedVehicleName("Some vehicle name")
.withIncompleteName(true);

// Create a transport order using the description:
TransportOrder dummyOrder = transportOrderService.createTransportOrder(orderT0);

// Trigger the dispatch process for the created transport order.
dispatcherService.dispatch();

2.2.5. Using order sequences

An order sequence can be used to force a single vehicle to process multiple transport orders in a
given order. Some rules for using order sequences are described in the API documentation for
OrderSequence, but here is what you would do in general:

11

// The transport order service instance we're working with
TransportOrderService transportOrderService = getATransportOrderServiceReference(

)i

// The dispatcher service instance we're working with
DispatcherService dispatcherService = getADispatcherServiceReference();

// Create an order sequence description with a unique name:
OrderSequenceCreationT0 sequenceTO
= new OrderSequenceCreationTO("MyOrderSequence");
// Optionally, express that the actual/full name of the sequence should be
// generated by the kernel.
sequenceT0 = sequenceTO.withIncompleteName(true);
// Optionally, set the sequence's failure-fatal flag:
sequenceT0 = sequenceTO.withFailureFatal(true);

// Create the order sequence:
OrderSequence orderSequence = transportOrderService.createOrderSequence(
sequenceT0);

// Set up the transport order as usual,

// but add the wrapping sequence's name:

List<DestinationCreationTO> destinations = new ArrayList<>();

destinations.add(new DestinationCreationTO("Some location name",
"Some operation"));

TransportOrderCreationTO orderTO

= new TransportOrderCreationTO("MyOrder-" + UUID.randomUUID(),
destinations)
.withWrappingSequence(orderSequence.getName());

// Create the transport order:
TransportOrder order = transportOrderService.createTransportOrder(orderT0);

// Create and add more orders as necessary.

// Eventually, set the order sequence's complete flag to indicate that more
// transport orders will not be added to it.
transportOrderService.markOrderSequenceComplete(orderSequence.getReference());

// Trigger the dispatch process for the created order sequence.
dispatcherService.dispatch();

As long as the sequence has not been marked as complete and finished completely, the vehicle
selected for its first order will be tied to this sequence. It will not process any orders not belonging
to the same sequence until the whole sequence has been finished.

Once the complete flag of the sequence has been set and all transport orders belonging to it have
been processed, its finished flag will be set by the kernel.

12

2.2.6. How to withdraw a transport order that is currently being processed

// The dispatcher service instance we're working with
DispatcherService dispatcherService = getDispatcherServiceFromSomewhere();

// Get the transport order to be withdrawn.

TransportOrder curOrder = getTransportOrderToWithdraw();

// Withdraw the order.

// The second argument indicates if the vehicle should finish the movements
// it is already assigned to (false) or abort immediately (true).
dispatcherService.withdrawByTransportOrder(curOrder.getReference(), true);

2.2.7. How to withdraw a transport order via a reference on the vehicle
processing it

// The object service instance we're working with
TCSObjectService objectService = getTCSObjectServiceFromSomewhere();

// Get the vehicle from which the transport order shall be withdrawn
Vehicle curVehicle = objectService.fetchObject(Vehicle.class,
getSampleVehicle());

// The dispatcher service instance we're working with
DispatcherService dispatcherService = getDispatcherServiceFromSomewhere();

// Withdraw the order.

// The second argument indicates if the vehicle should finish the movements
// it is already assigned to (false) or abort immediately (true).
dispatcherService.withdrawByVehicle(curVehicle.getReference(), true);

2.3. Using the event bus

Each of the main openTCS applications—Kernel, Kernel Control Center and Plant
Overview —provides an event bus that can be used to receive or emit event objects application-
wide. To acquire the respective application’s event bus instance, request it to be provided via
dependency injection. Any of the following three variants of constructor parameters are

equivalent:

public MyClass(@ApplicationEventBus EventHandler eventHandler) {

}

13

public MyClass(@ApplicationEventBus EventSource eventSource) {

}

public MyClass(@ApplicationEventBus EventBus eventBus) {

}

Having acquired the EventHandler, EventSource or EventBus instance that way, you can use it to emit
event objects to it and/or subscribe to receive event objects.

Note that, within the Kernel application, event objects should be emitted via the kernel executor to
avoid concurrency issues — see Executing code in kernel context.

14

Chapter 3. Generating an integration project

openTCS integration projects for customer- or plant-specific distributions often have a very similar
structure. The openTCS distribution provides a way to easily generate such integration projects.
This way, a developer can get started with customizing and extending openTCS components quickly.

To generate a template/skeleton for a new integration project, do the following:

1. Download and unzip the integration project example from the openTCS homepage.

2. Execute the following command from the example project’s root directory: gradlew
cloneProject

The integration project will be generated in the build/ directory. (Make sure you copy it somewhere
else before running the example project’s clean task the next time.)

The project and the included classes will have generic names. You can adjust their names by setting
a couple of properties when running the above command. The following properties are looked at:

* integrationName: Used for the names of the project itself and the subprojects within it.

* classPrefix: Used for some classes within the subprojects.

For instance, your command line could look like this:
gradlew -PintegrationName=MyGreatProject -PclassPrefix=Great cloneProject

This would include MyGreatProject in the integration project name, and Great in some class names.

Inserting your own source code into a copy of the baseline openTCS project instead
of creating a proper integration project as described above is not recommended.

o This is because, when integrating openTCS by copying its source code, you lose the
ability to easily upgrade your code to more recent openTCS versions (for bugfixes
or new features).

15

Chapter 4. Customizing and extending the
kernel application

4.1. Guice modules

The openTCS kernel application uses Guice to configure its components. To modify the wiring of
components within the application and to add your own components, you can register custom
Guice modules. Modules are found and registered automatically via java.util.Serviceloader.

Basically, the following steps are required for customizing the application:

1. Build a JAR file for your custom injection module with the following content:

a. A subclass of org.opentcs.customizations.kernel.KernelInjectionModule, which can be found
in the base library, must be contained. Configure your custom components or adjust the
application’s default wiring in this module. KernelInjectionModule provides a few supporting
methods you can use.

b. A plain text file named META-
INF/services/org.opentcs.customizations.kernel.KernelInjectionModule must also be
contained. This file should contain a single line of text with the fully qualified class name of
your module.

2. Ensure that the JAR file(s) containing your Guice modules and the implementation of your
custom component(s) are part of the class path when you start the kernel application.

For more information on how the automatic registration works, see the documentation of
java.util.Serviceloader in the Java class library. For more information on how Guice works, see
the Guice documentation.

4.2. Replacing default kernel components

The kernel application comes with default implementations for the dispatching, routing and
scheduling components. These default implementations allow the kernel to fulfil all of its
responsibilities, but specific use cases might make it necessary to replace them with custom ones. In
such cases, they can be replaced with a custom Guice configuration.

For each of these components, KernelInjectionModule provides a convenience method for
(re)binding the implementation. To replace e.g. the default Dispatcher implementation, simply
register a Guice module in which you call bindDispatcher(). The module’s implementation could
look like this:

protected void configure() {
configureSomeDispatcherDependencies();
bindDispatcher(CustomDispatcher.class);

}

16

Note that all component implementations are bound as singletons. This is
important for the following reason: Components may be injected and used at
multiple places within the kernel application; at the same time, every component

o may also have to keep an internal state to do its work. If they were not bound as
singletons, a new instance would be created for every injection, each of them with
their own, separate internal state. Build custom components with that in mind,
and implement their initialize() and terminate() methods appropriately!

4.3. Developing vehicle drivers

openTCS supports integration of custom vehicle drivers that implement vehicle-specific
communication protocols and thus mediate between the kernel and the vehicle. Due to its function,
a vehicle driver is also called a communication adapter. The following sections describe which
requirements must be met by a driver and which steps are necessary to create and use it.

4.3.1. Classes and interfaces for the kernel

‘ @ VehicleCommAdap terI ‘ @ VehicleCommAdapterFactory I
‘@ Bam'CVehi'cIeCommAdapterI ‘@ CustomAdapterFactoryI ‘@ Vehi’c.feCommAdapterDeswcnpﬂ'onI
_ -~ “instantiates T T~ provides
T
‘@VehicleProcessModelI ‘@VehicleProcessModelTOI ‘@CustomDescriptionI
i Te-al
| =~ - _ |produces
| T -
| e
Implements communication
oot & Sl vl B“ ©CustoumcessModel| ‘@ CustnmProcessModelTOI

Figure 7. Classes of a comm adapter implementation (kernel side)

When developing a vehicle driver, the most important classes and interfaces in the base library are
the following:

* VehicleCommAdapter declares methods that every comm adapter must implement. These methods
are called by components within the kernel, for instance to tell a vehicle that it is supposed to
move to the next position in the driving course. Classes implementing this interface are
expected to perform the actual communication with a vehicle, e.g. via TCP, UDP or some field
bus.

* BasicVehicleCommAdapter is the recommended base class for implementing a VehicleCommAdapter.
It primarily provides some basic command queueing.

» VehicleCommAdapterFactory describes a factory for VehicleCommAdapter instances. The kernel
instantiates and uses one such factory per vehicle driver to create instances of the respective
VehicleCommAdapter implementation on demand.

* A single VehicleProcessModel instance should be provided by every VehicleCommAdapter instance
in which it keeps the relevant state of both the vehicle and the comm adapter. This model

17

instance is supposed to be updated to notify the kernel about relevant changes. The comm
adapter implementation should e.g. update the vehicle’s current position in the model when it
receives that information to allow the kernel and GUI frontends to use it. Likewise, other
components may set values that influence the comm adapter’s behaviour in the model, e.g. a
time interval for periodic messages the comm adapter sends to the vehicle. VehicleProcessModel
may be used as it is, as it contains members for all the information the openTCS kernel itself
needs. However, developers may use driver-specific subclasses of VehicleProcessModel to have
the comm adapter and other components exchange more than the default set of attributes.

4.3.2. Classes and interfaces for the control center application

o For the kernel control center application the following interfaces are the most
important.
@ VehicleCommAdapterPanelFactory @ VehicleCommAdapterDescription
@CustompanelFactnry @Vehi’cIeCommAdapterPaneI @Custanescriptinn

-
£
-
o
-

~ ~ _instantiates

-
-
-

~ o
@Custnmpanel @VehicleProcessModelTO

T~ _consumes

-
-

~ M
@CustnmpmcessMndelTO

Figure 8. Classes of a comm adapter implementation (kernel control center side)

18

VehicleCommAdapterPanel instances may be created by a VehicleCommAdapterPanelFactory e.g. to
display information about the associated vehicle or send low-level messages to it.

VehicleProcessModelTO instances should be provided by every VehicleCommAdapter instance
according to the current state of its VehicleProcessModel. Instances of this model are supposed to
be used in a comm adapter’s VehicleCommAdapterPanel instances for updating their contents only.
Note that VehicleProcessModelTO0 is basically a serializable representation of a comm adapter’s
VehicleProcessModel. Developers should keep that in mind when creating driver-specific
subclasses of VehicleProcessModelTO.

Instances of VehicleCommAdapterDescription provide a string describing/identifying the comm
adapter implementation. This string is shown e.g. when the user may select one of a set of
driver implementations and should thus be unique. It is also used for attaching a comm adapter
implementation via VehicleService.attachCommAdapter ().

AdapterCommand instances can be sent from a panel to a VehicleCommAdapter instance via
VehicleService.sendCommAdapterCommand(). They are supposed to be executed by the comm
adapter and can be used to execute arbitrary methods, e.g. methods of the VehicleCommAdapter

itself, or update contents of the comm adapter’s VehicleProcessModel. Note that AdapterCommand
instances can only be sent to and processed by the kernel application if they are serializable and
present in the kernel application’s classpath.

4.3.3. Steps to create a new vehicle driver

1. Create an implementation of VehicleCommAdapter:

a. Subclass BasicVehicleCommAdapter unless you have a reason not to. You don’t have to, but if
you don’t, you also need to implement command queue management yourself.

b. Implement the abstract methods of BasicVehicleCommAdapter in the derived class to realize
communication with the vehicle and to provide driver-specific visualization panels, if any.

c. In situations in which the state of the vehicle changes in a way that is relevant for the kernel
or the comm adapter’s custom panels, the comm adapter should call the respective methods
on the model. Most importantly, call setVehiclePosition() and commandExecuted() on the
comm adapter’s model when the controlled vehicle’s reported state indicates that it has
moved to a different position or that it has finished an order.

2. Create an implementation of VehicleCommAdapterFactory that provides instances of your
VehicleCommAdapter for given Vehicle objects.

3. Optional: Create any number of implementations of VehicleCommAdapterPanel that the kernel
control center application should display for the comm adapter. Create and return instances of
these panels in the getPanelsFor() method of your VehicleCommAdapterPanelFactorys
implementation.

See the API documentation for more details. For an example, refer to the implementation of the
loopback comm adapter for virtual vehicles in the openTCS source distribution. (Note, however,
that this implementation does not implement communication with any physical vehicle.)

4.3.4. Registering a vehicle driver with the kernel

1. Create a Guice module for your vehicle driver by creating a subclass of KernelInjectionModule.
Implement the configure() method and register a binding to your VehicleCommAdapterFactory.
For example, the loopback driver that is part of the openTCS distribution registers its own
factory class with the following line in its configure() method:

vehicleCommAdaptersBinder().addBinding().to(
LoopbackCommunicationAdapterFactory.class);

2. In the JAR file containing your driver, ensure that there exists a folder named META-
INF/services/ with a file named org.opentcs.customizations.kernel.KernelInjectionModule. This
file should consist of a single line of text holding simply the name of the Guice module class, e.g.:

org.opentcs.virtualvehicle.LoopbackCommAdapterModule

19

Background: openTCS uses java.util.ServicelLoader to automatically find Guice

o modules on startup, which depends on this file (with this name) being present.
See the JDK’s API documentation for more information about how this
mechanism works.

3. Place the JAR file of your driver including all neccessary resources in the subdirectory
1ib/openTCS-extensions/ of the openTCS kernel application’s installation directory before the
kernel is started. (The openTCS start scripts include all JAR files in that directory in the
application’s classpath.)

Drivers meeting these requirements are found automatically when you start the kernel.

4.4. Sending messages to communication adapters

Sometimes it is required to have some influence on the behaviour of a communication adapter (and
thus the vehicle it is associated with) directly from a kernel client - to send a special telegram to the
vehicle, for instance. For these cases,
VehicleService.sendCommAdapterMessage(TCSObjectReference<Vehicle>, Object) provides a one-way
communication channel for a client to send a message object to a communication adapter currently
associated with a vehicle. A comm adapter implementing processMessage() may interpret message
objects sent to it and react in an appropriate way. Note that the client sending the message may not
know which communication adapter implementation is currently associated with the vehicle, so
the adapter may or may not be able to understand the message.

4.5. Acquiring data from communication adapters

For getting information from a communication adapter to a kernel client, there are the following
ways:

Communication adapters may publish events via their VehicleProcessModel instance to emit
information encapsulated in an event for any listeners registered with the kernel. Apparently,
listeners must already be registered before such an event is emitted by the communication adapter,
or they will miss it. To register a client as a listener, use EventSource.subscribe(). You can get the
EventSource instance used by the kernel through dependency injection by using the qualifier
annotation org.opentcs.customizations.ApplicationEventBus.

Alternatively, communication adapters may use their VehicleProcessModel to set properties in the
corresponding Vehicle object. Kernel clients may then retrieve the information from it:

// The object service instance we're working with
TCSObjectService objectService = getTCSObjectServiceFromSomewhere();

// Get the vehicle from which information shall be retrieved
Vehicle vehicle = objectService.fetchObject(Vehicle.class, getTheVehicleName());

// Get the actual property you're looking for
String property = vehicle.getProperty("someKey");

20

Communication adapters may also use their VehicleProcessModel to set properties in the
corresponding TransportOrder object a vehicle is currently processing. This basically works the
same way as with the Vehicle object:

// The Kernel instance we're working with
TCSObjectService objectService = getTCSObjectServiceFromSomewhere();

// Get the tansport order from which information shall be retrieved
TransportOrder transportOrder = objectService.fetchObject(TransportOrder.class,

getTheTransportOrderName());

// Get the actual property you're looking for
String property = transportOrder.getProperty("someKey");

Unlike information published via events, data stored as properties in Vehicle or TransportOrder
objects can be retrieved at any time.

4.6. Executing code in kernel context

Within the kernel, concurrent modifications of the data model — e.g. contents of the plant model or
transport order properties—need to be synchronized carefully. Similar to e.g. the Swing
framework’s Event Dispatcher Thread, a single thread is used for executing one-shot or periodics
tasks performing data modifications. To help with this, an instance of
java.util.concurrent.ScheduledExecutorService is provided. Custom code running within the kernel
application, including vehicle drivers and implementations of additional funcionality, should also
perform changes of the data model via this executor only to avoid concurrency issues.

To make use of the kernel’s executor, use the @KernelExecutor qualifier annotation and inject a
ScheduledExecutorService:

public MyClass(ScheduledExecutorService kernelExecutor) {

}

You can also inject it as a java.util.concurrent.ExecutorService:

public MyClass(ExecutorService kernelExecutor) {

}

Injecting a java.util.concurrent.Executor is also possible:

21

public MyClass(Executor kernelExecutor) {

}

Then, you can use it e.g. to lock a path in the plant model in kernel context:
kernelExecutor.submit(() -> routerService.updatePathLock(ref, true));

Due to the single-threaded nature of the kernel executor, tasks submitted to it are executed
sequentially, one after another. This implies that submitting long-running tasks should be avoided,
as they would block the execution of subsequent tasks.

When event objects, e.g. instances of TCSObjectEvent, are distributed within the kernel, this always
happens in kernel context, i.e. from a task that is run by the kernel executor. Event handlers should
behave accordingly and finish quickly/not block execution for too long. If processing an event
requires time-consuming actions to be taken, these should be executed on a different thread.

As its name indicates, the kernel executor is only available within the kernel

o application. It is not available for code running in other applications like the Plant
Overview, and it is not required there (for avoiding concurrency issues in the
kernel).

22

Chapter 5. Customizing and extending the
control center application

5.1. Guice modules

The openTCS kernel control center application uses Guice to configure its components. To modify
the wiring of components within the application and to add your own components, you can register
custom Guice modules. Modules are found and vregistered automatically via
java.util.Serviceloader.

Basically, the following steps are required for customizing the application:

1. Build a JAR file for your custom injection module with the following content:

a. A subclass of org.opentcs.customizations.controlcenter.ControlCenterInjectionModule must
be contained. Configure your custom components or adjust the application’s default wiring
in this module. ControlCenterInjectionModule provides a few supporting methods you can
use.

b. A plain text file named META-
INF/services/org.opentcs.customizations.controlcenter.ControlCenterInjectionModule must
also be contained. This file should contain a single line of text with the fully qualified class
name of your module.

2. Ensure that the JAR file(s) containing your Guice modules and the implementation of your
custom component(s) are part of the class path when you start the control center application.

For more information on how the automatic registration works, see the documentation of
java.util.Serviceloader in the Java class library. For more information on how Guice works, see
the Guice documentation.

5.2. Registering driver panels with the control center

1. Create a Guice module for your vehicle driver by creating a subclass of
ControlCenterInjectionModule. Implement the configure() method and register a binding to your
VehicleCommAdapterPanelFactory. The following example demonstrates how this module’s
configure() method looks like for the loopback driver that is part of the openTCS distribution:

protected void configure() {
commAdapterPanelFactoryBinder().addBinding().to(
LoopbackCommAdapterPanelFactory.class);

}

2. In the JAR file containing your driver, ensure that there exists a folder named META-
INF/services/ with a file named
org.opentcs.customizations.controlcenter.ControlCenterInjectionModule. This file should

23

consist of a single line of text holding simply the name of the Guice module class, e.g.:

org.opentcs.controlcenter.LoopbackCommAdapterPanelsModule

Background: openTCS uses java.util.Serviceloader to automatically find Guice

o modules on startup, which depends on this file (with this name) being present.
See the JDK’s API documentation for more information about how this
mechanism works.

3. Place the JAR file of your driver including all neccessary resources in the subdirectory
lib/openTCS-extensions/ of the control center application’s installation directory before the
application is started. (The openTCS start scripts include all JAR files in that directory in the
application’s classpath.)

Panels meeting these requirements are found automatically when you start the kernel control
center application.

24

Chapter 6. Customizing and extending the
Model Editor and the Operations Desk
applications

The process of customizing and extending the Model Editor and the Operations
Desk is basically identical for both applications. For the sake of simplicity, this

o section describes the process using the Operations Desk application as an example.
Where necessary, differences between the two applications are explicitly
mentioned.

6.1. Guice modules

Analogous to the kernel application, the Operations Desk application uses Guice to configure its
components. To modify the wiring of components within the application and to add your own
components, you can register custom Guice modules. Modules are found and registered
automatically via java.util.Serviceloader.

Basically, the following steps are required for customizing the application:

1. Build a JAR file for your custom injection module with the following content:

a. A subclass of PlantOverviewInjectionModule, which can be found in the base library, must be
contained. Configure your custom components or adjust the application’s default wiring in
this module. PlantOverviewInjectionModule provides a few supporting methods you can use.

b. A plain text file named META-
INF/services/org.opentcs.customizations.plantoverview.PlantOverviewInjectionModule must
also be contained. This file should contain a single line of text with the fully qualified class
name of your module.

2. Ensure that the JAR file(s) containing your Guice modules and the implementation of your
custom component(s) are part of the class path when you start the Operations Desk application.

For more information on how the automatic registration works, see the documentation of
java.util.Serviceloader in the Java class library. For more information on how Guice works, see
the Guice documentation.

6.2. How to create a plugin panel for the Operations
Desk client

The Operations Desk client offers to integrate custom panels providing project-specific
functionality.

1. Implement a subclass of PluggablePanel.

2. Implement a PluggablePanelFactory that produces instances of your PluggablePanel.

25

3.

The PluggablePanelFactory.providesPanel(state) method is used to determine
which Kernel.State a factory provides panels for. For plugin panels that are
intended to be used with the Model Editor application only, this method should

o return true for the kernel state Kernel.State.MODELLING. For plugin panels that
are intended to be used with the Operations Desk application only, this method
should return true for the kernel state Kernel.State.0OPERATING. Otherwise the
plugin panels won’t be shown in the respective application.

Create a Guice module for your PluggablePanelFactory by subclassing
PlantOverviewInjectionModule. Implement the configure() method and add a binding to your
PluggablePanelFactory using pluggablePanelFactoryBinder(). For example, the load generator
panel that is part of the openTCS distribution is registered with the following line in its module’s
configure() method:

pluggablePanelFactoryBinder().addBinding().to(ContinuousLoadPanelFactory.class
)

Build and package the PluggablePanel, PluggablePanelFactory and Guice module into a JAR file.

In the JAR file, register the Guice module class as a service of type PlantOverviewInjectionModule.
To do that, ensure that the JAR file contains a folder named META-INF/services/ with a file
named org.opentcs.customizations.plantoverview.PlantOverviewInjectionModule. This file
should consist of a single line of text holding simply the name of the guice module class, e.g.:

org.opentcs.guing.plugins.panels.loadgenerator.LoadGeneratorPanelModule

Place the JAR file in the Operations Desk application’s class path (subdirectory 1ib/openT(S-
extensions/ of the application’s installation directory) and start the application.

6.3. How to create a location/vehicle theme for
openTCS

Locations and vehicles are visualized in the Operations Desk client using configurable themes. To
customize the appearance of locations and vehicles, new theme implementations can be created
and integrated into the Operations Desk client.

1.
2.

3.

Create a new class which implements LocationTheme or VehicleTheme.

Place the JAR file of your theme, containing all required resources, in the subdirectory
1ib/openTCS-extensions/ of the openTCS Operations Desk application’s installation directory
before the application is started. (The openTCS start scripts include all JAR files in that directory
in the application’s classpath.)

Set the locationThemeClass or vehicleThemeClass in the Operations Desk application’s
configuration file.

Vehicles or locations in plant models are then rendered using your custom theme.

26

Chapter 7. Supplementing configuration
sources

As described in the openTCS User’s Guide, the openTCS Kernel, Kernel Control Center and Plant
Overview applications read their configurations from properties files. This functionality is provided
by the cfg4j library.

It is possible to register additional configuration sources, e.g. for reading configuration data from
network resources or files in different formats. The mechanism provided by
java.util.Serviceloader is used for this. The following steps are required for registering a
configuration source:

1. Build a JAR file with the following content:

a. An implementation of SupplementaryConfigurationSource. This interface is part of the
opentcs-impl-configuration-cfg4j artifact, which must be on your project’s classpath.

b. A plain text file named META-
INF/services/org.opentcs.configuration.cfg4j.SupplementaryConfigurationSource. This file
should contain a single line of text with the fully qualified class name of your
implementation.

2. Ensure that the JAR file is part of the classpath when you start the respective application.
It is possible to register multiple supplementary configuration sources this way.

The configuration entries provided by any registered supplementary configuration source may
override configuration entries provided by the properties files that are read by default. Note that
the order in which these additional configuration sources are processed is unspecified.

For more information on how the automatic registration works, see the documentation of
java.util.Serviceloader in the Java class library.

27

http://www.cfg4j.org/

Chapter 8. Translating the user interfaces

Each openTCS application with a user interface is prepared for internationalization based on Java’s
ResourceBundle mechanism. As a result, the applications can be configured to display texts in
different languages, provided there is a translation in the form of resource bundle property files.
(How this configuration works is described in the User’s Guide.) The openTCS distribution itself
comes with language files for the default language (English) and German. Additional translations
can be integrated primarily by adding JAR files containing property files to the class path.

The following sections explain how to create and integrate a new translation.

Parts of the texts in the distribution may change between openTCS releases. While
this might not happen often, it still means that, when you update to a new version

o of openTCS, you may want to check whether your translations are still correct. If
there were textual changes in the openTCS distribution, you may need to update
your language files.

8.1. Extracting default language files

To create a new translation pack for an application, you first need to know what texts to translate.
The best way to do this is to look at the existing language files in the openTCS distribution. These
are contained in the applications' JAR files (opentcs-*.jar), and are by convention kept in a
common directory /i18n/org/opentcs inside these JAR files.

To start your translation work, extract all of the application’s language files into a single directory
first. Since JAR files are really only ZIP files, this can be done using any ZIP utility you like. As an
example, to use unzip in a shell on a Linux system, issue the following command from the
application’s 1ib/ directory:

unzip "opentcs-*.jar" "i18n/org/opentcs/*.properties”

Alternatively, to use 7-Zip in a shell on a Windows system, issue the following command from the
application’s 1ib/ directory:

7z x -r "opentes-*.jar" "i18n\org\opentcs*.properties"

You will find the extracted language files in the i18n/ directory, then. For the Plant Overview
application, an excerpt of that directory’s contents would look similar to this:

28

https://7-zip.org/

118n/
org/
opentcs/
plantoverview/
mainMenu.properties
mainMenu_de.properties
toolbar.properties
toolbar_de.properties

Files whose names end with _de.properties are German translations. You will not need these and
can delete them.

8.2. Creating a translation

Copy the whole 118n/ directory with the English language files to a new, separate directory, e.g.
translation/. Working with a copy ensures that you still have the English version at hand to look up
the original texts when translating.

Then rename all property files in the new directory so their names contain the appropriate
language tag for your translation. If you are e.g. translating to Norwegian, rename
mainMenu.properties to mainMenu_no.properties and the other files accordingly. It is important that
the base name of the file remains the same and only the language tag is added to it.

The next step is doing the actual translation work —open each property file in a text editor and
translate the properties' values in it.

After translating all the files, create a JAR file containing the i18n/ directory with your language
files. You can do this for instance by simply creating a ZIP file and changing its name to end with
.jar.

The result could be a file named e.g. language-pack-norwegian.jar, whose contents should look
similar to this:

118n/
org/
opentcs/
plantoverview/
mainMenu_no.properties
toolbar_no.properties

8.3. Integrating a translation

Finally, you merely need to add the JAR file you created to the translated application’s class path.
After configuring the application to the respective language and restarting it, you should see your
translations in the user interface.

29

8.4. Updating a translation

As development of openTCS proceeds, parts of the applications' language files may change. This
means that your translations may also need to be updated when you move from one version of
openTCS to a more recent one.

To find out what changes were made and may need to be applied to your translations, you could do
the following:

1. Extract the language files for the old version of the application, e.g. into a directory
translation_old/.

2. Extract the language files for the new version of the application, e.g. into a directory
translation_new/.

3. Create a diff between the two language file versions. For example, on a Linux system you could
run diff -urN translation_old/ translation_new/ > language_changes.diff to write a diff to the
file 1anquage_changes.diff.

4. Read the diff to see which new language files and/or entries were added, removed or changed.

Based on the information from the diff, you can apply appropriate changes to your own language
files. Then you merely need to create new JAR files for your translations and add them to the
applications' class paths.

30

https://en.wikipedia.org/wiki/Diff

	openTCS: Developer’s Guide
	Table of Contents
	Chapter 1. Development with openTCS in general
	1.1. System requirements
	1.2. Available artifacts and API compatibility
	1.3. Third-party dependencies
	1.4. Modularity and extensibility
	1.5. Logging
	1.6. Working with the openTCS source code
	1.7. openTCS kernel APIs

	Chapter 2. The kernel’s Java API
	2.1. Acquiring service objects
	2.2. Working with transport orders
	2.2.1. A transport order’s life cycle
	2.2.2. Structure and processing of transport orders
	2.2.3. How to create a new transport order
	2.2.4. How to create a transport order that sends a vehicle to a point instead of a location
	2.2.5. Using order sequences
	2.2.6. How to withdraw a transport order that is currently being processed
	2.2.7. How to withdraw a transport order via a reference on the vehicle processing it

	2.3. Using the event bus

	Chapter 3. Generating an integration project
	Chapter 4. Customizing and extending the kernel application
	4.1. Guice modules
	4.2. Replacing default kernel components
	4.3. Developing vehicle drivers
	4.3.1. Classes and interfaces for the kernel
	4.3.2. Classes and interfaces for the control center application
	4.3.3. Steps to create a new vehicle driver
	4.3.4. Registering a vehicle driver with the kernel

	4.4. Sending messages to communication adapters
	4.5. Acquiring data from communication adapters
	4.6. Executing code in kernel context

	Chapter 5. Customizing and extending the control center application
	5.1. Guice modules
	5.2. Registering driver panels with the control center

	Chapter 6. Customizing and extending the Model Editor and the Operations Desk applications
	6.1. Guice modules
	6.2. How to create a plugin panel for the Operations Desk client
	6.3. How to create a location/vehicle theme for openTCS

	Chapter 7. Supplementing configuration sources
	Chapter 8. Translating the user interfaces
	8.1. Extracting default language files
	8.2. Creating a translation
	8.3. Integrating a translation
	8.4. Updating a translation

